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Abstract
The generalized connections of the de Sitter algebra so(d, 1) and anti-de Sitter
algebra so(d−1, 2), which are differential forms of arbitrary degree with values
in any irreducible (spin)-tensor representation of the (anti)-de Sitter algebra,
are studied. It is shown that an arbitrary-spin gauge field in (anti)-de Sitter
space, massless or partially-massless, can be described by a single connection.
A ‘one-to-one’ correspondence between the connections of the (anti)-de Sitter
algebra and the gauge fields is established. The gauge symmetry is manifest
and auxiliary fields are automatically included in the formalism.

PACS numbers: 11.10.Kk, 11.15.−q

Introduction and main results

The paper aims at (I) studying generalized Yang–Mills connections of the (anti)-de Sitter
algebra, i.e. so(d, 1) (de Sitter) or so(d−1, 2) (anti-de Sitter), that are defined to be differential
forms of arbitrary degree with values in any irreducible finite-dimensional representation of
the (anti)-de Sitter algebra; (II) constructing the frame-like formulation for gauge fields in
(anti)-de Sitter space, including all types of massless and partially-massless fields.

Our motivation is twofold: first, to study a natural geometric and algebraic object presented
by a generalized connection of the spacetime symmetry algebra, the generalization lies in
allowing the form degree and the representation in which a generalized connection takes
values to be arbitrary, with the Yang–Mills connection arising if the form degree is 1 and the
representation is the adjoint one. The second motivation is to develop the theory involving the
fields of the most general spin type in higher dimensions, the higher-spin theory.

For many years the theory of higher-spin gauge fields, which studies the classical problem
of constructing consistent interacting theories of fields of various spins, has been attracting
considerable interest. One of the main goals of higher-spin theory is the full classical nonlinear
theory of massless fields of spins s = 0, 1, 2, . . . constructed in [1, 2], introducing two new
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ingredients—the unfolded approach to field equations [3–5], which is based on free differential
algebras [6–9], and the higher-spin algebras [10–12], which are certain infinite-dimensional
extensions of the spacetime symmetry algebra. For recent reviews on higher-spin gauge theory
see [13–24].

In d = 4 the spin degrees of freedom are determined by a single (half)integer
s = 0, 1

2 , 1, . . . . Beyond d = 4, more general types of fields come into play, where
both the spin (physical polarization tensor) and the field potential are neither symmetric
nor antisymmetric tensors [25–42]. These fields of a general tensor type are referred to as
mixed-symmetry fields and are more difficult to study even at the free level.

The major motivation for studying the gauge fields rather than massive ones is that the
gauge symmetry is very restrictive. For the case of spin-s fields, the gauge symmetry is known
to provide a very limited class of higher-spin multiplets [10–12], each containing fields of
arbitrary large spins, and to fix all dimensionless coupling constants for the vertices of spin-s
fields [2].

The massive modes of string theory are believed to come via spontaneous breaking of
higher-spin gauge symmetries [43–46]. Massless higher-spin fields are also known to appear
in the tensionless limit of string theory [17, 47–50].

Of most interest is the theory of arbitrary-spin fields, in particular of mixed-symmetry
fields, in the (anti)-de Sitter background. In the Minkowski space the only gauge fields are
massless ones. A wider variety of gauge fields is available in the (anti)-de Sitter space. The
gauge fields in (anti)-de Sitter space are presented by different types of massless [51–54]
and partially-massless fields [40, 42, 55–64], for which we will construct manifestly gauge
invariant and geometric description in terms of the generalized connections.

(I) An (A)dSd gauge connection WA
q is defined by a pair {q, A}, where q = 1, . . . , d

is a form degree and A is a finite-dimensional irreducible representation of the (anti)-de
Sitter algebra, i.e. either a tensor or a spin-tensor, which is convenient to specify by a Young
diagrams1. Given a flat (A)dSd covariant derivative D�, i.e. D�

2 = 0, the field strength
RA

q+1 = D�WA
q is manifestly invariant under the gauge transformations δWA

q = D�ξA
q−1,

providing us with a natural framework for gauge theories in (A)dSd [63–67].
(II) A gauge field in (anti)-de Sitter space is defined [68] by a triple (S, q, t), where S is a

Young diagram that specifies both the symmetry type of the field potential φS(x) as a Lorentz
tensor and the physical polarization tensor of so(d − 1), which is the Wigner little algebra of
(A)dSd [54]. The integers q and t determine the tensor type S1 of the gauge parameter ξS1(x)

and the gauge transformation law. Let S = Y{s1, . . . , sp}; then the gauge parameter ξS1(x)

is a Lorentz tensor having the symmetry of S1 = Y{s1, . . . , sq−1, sq − t, sq+1, . . . , sp}. The
integer t is equal to the order of derivative in the gauge transformations

δφS =
t︷ ︸︸ ︷

D . . . D ξS1 + · · · .
The irreducible representation of the (A)dSd algebra is realized on the solutions of certain
gauge invariant equations imposed on φS.

(I versus II) In this paper, we address the following question: given a pair {q, A}, what
type of (A)dSd field does the gauge connection WA

q describe? Does this map cover the whole
variety of (A)dSd fields? We will see that the answer for the latter question is yes, i.e. to every
given triple (S, q, t) one can assign a certain gauge connection WA

q .

1 In this paper, ‘an irreducible tensor of sl(d) or so(d) having the symmetry of a Young diagram Y{s1, . . . , sn}’
is synonymous to ‘a finite-dimensional irreducible highest weight module of sl(d) or so(d) with highest weight
(s1, . . . , sn, 0n+1, . . . , 0ν)’, where ν = d−1 for sl(d) and ν = [d/2] for so(d). To avoid (anti)-selfdual representations
in the so(d) case we assume ν > n. ‘A tensor having the symmetry of Y’ refers only to the permutation symmetry
of its indices, which for so(d) is weaker than irreducibility.
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To be precise, the main result is that a gauge field defined by (S, q, t) can be described by
a single degree-q differential form WA

q over (anti)-de Sitter space with values in an irreducible
tensor representation of the (anti)-de Sitter algebra that is characterized by the Young diagram
A = Y{s1 − 1, . . . , sq − 1, sq − t, sq+1, . . . , sp}.

S =

sp
...
sq+1

sq
...
s1 ......

, A =

sp
...
sq+1

sq − t
sq − 1

...
...... s1 − 1

Decomposing (A)dSd -module A with respect to the Lorentz subalgebra of the (anti)-de
Sitter algebra, WA

q yields a collection of Lorentz connections. The dynamical field φa(s1),...,u(sp)

is embedded into the generalized frame field, with the rest of the connections playing an
auxiliary role at the free level. Setting certain components of the field strength RA

q+1 to zero,
the correct equations on φS are obtained.

The approach is a far-reaching generalization of the MacDowell–Mansouri–Stelle–West
approach to gravity [69, 70], in which the single connection2 WA,B

μ dxμ = −WB,A
μ dxμ of the

(anti)-de Sitter algebra, after breaking the (anti)-de Sitter algebra down to the Lorentz algebra,
yields the frame (vielbein/tetrad) field ea

μ dxμ and the Lorentz spinconnection ωa,b
μ dxμ. It is

also a direct extension of the works [65–67], where certain gauge connections of the (anti)-de
Sitter algebra were proposed as a natural framework for the (Y{s}, 1, 1), (Y{s1, . . . , sp}, 1, 1)3

and (Y{s}, 1, t) series of gauge fields.
The paper is organized as follows. In section 1 we discuss wave equations in Minkowski,

de Sitter and anti-de Sitter spaces and their relation to the representation theory. The precise
definition and classification of fields in (anti)-de Sitter space are given in section 2. In
section 3 we recall the description of the (anti)-de Sitter geometry by Cartan connections. The
main subject of the paper, gauge connections of the (A)dSd algebra, is studied in section 4.
The correspondence between gauge fields in (A)dSd and gauge connections of the (anti)-de
Sitter algebra is established in section 5. A discussion of the results and further developments
concerning the nonlinear theory of gauge fields is given in section 6.

In the next section, we review without details the background for field theories in
Minkowski and (anti)-de Sitter spaces, accentuating the difference between them. Then,
we argue that the frame-like approach and its generalization to arbitrary-spin fields are more
powerful and illustrate on the example of a massless spin-s field the advantage of describing
fields by a single gauge connection.

Field theories in Minkowski and (A)dSd, mixed-symmetry fields

Relativistic fields are known to be in one-to-one correspondence with unitary irreducible
representations of the space symmetry algebra, being iso(d − 1, 1) for a d-dimensional
Minkowski space. The famous Wigner results [71] on the classification of relativistic fields in
4d Minkowski spacetime can be generalized to an arbitrary spacetime dimension d � 4 [72].

As in 4d, a unitary irreducible representation of iso(d − 1, 1) is determined by two
parameters, the mass m2 � 0 and the spin S. The mass fixes the Casimir PaP

a of iso(d−1, 1).
2 Indices A, B, C, . . . = 0, . . . , d are either of the de Sitter so(d, 1) or anti-de Sitter so(d − 1, 2) algebra. Indices
a, b, c, . . . = 0, . . . , d − 1 are of the fibre Lorentz algebra so(d − 1, 1). Indices μ, ν, . . . = 0, . . . , d − 1 are world
indices of differential forms.
3 To be precise, in [66] q is the number of first equal rows of S.
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The spin defines an irreducible representation of the stability algebra f of the momentum
that obeys PaP

a = m2. Called the Wigner little algebra, f is either so(d − 1) for time-like
momentum (m2 > 0) or iso(d −2) for light-like momentum (m2 = 0). Due to the requirement
for the number of spin degrees of freedom to be finite the translations of iso(d − 2) must be
represented trivially, reducing f to so(d − 2) for m2 = 0. Therefore, the spin degrees of
freedom are in one-to-one correspondence with irreducible (spin)-tensor representations of
so(d − 1) or so(d − 2).

Having completed the classification of relativistic fields, the next problem, referred to as
the Bargmann–Wigner program [73, 74], is to associate with each pair (m2, S) a relativistic
wave equation whose solution space forms the representation of iso(d − 1, 1) labelled by m2

and S. The wave equation has the form (� + m2)φab...(x) = 0 with φab...(x) being a certain
(spin)-tensor field of the Lorentz algebra and may be supplemented with some algebraic and
differential constraints imposed on φab... to exclude the spin states different from S.

If there are no additional requirements to be met, e.g., that the wave equation together
with the differential constraints comes from a Lagrangian, without loss of generality φab...

can take values in an irreducible (spin)-tensor representation of the Lorentz algebra, say in R.
Given m2 and S there exist infinitely many choices of R, known as dual descriptions. Despite
this ambiguity, it is natural to take R to have the same symmetry properties as the physical
polarization tensor (spin) has, i.e. to take R = S as Young diagrams. For this remarkable
choice φS(x) will be called a spin-S potential. Representing fields by potentials appears to
be more fundamental since, for example, electro-magnetic interactions require potential Aμ

rather than the Faraday tensor Fμν .
In 4D the spin S is defined by a single (half)-integer, say s, which corresponds to a totally

symmetric rank-s (spin)-tensor potential. In higher dimensions there exist more complicated
(spin)-tensor representations of the Wigner little algebra, referred to as mixed-symmetry
(spin)-tensors, which are neither symmetric nor antisymmetric (spin)-tensors. This being the
case, the spin S is defined by a number of (half)-integers s1, . . . , sp. The maximal value of p
is equal to [(d − 1)/2] for massive fields and to [(d − 2)/2] for massless ones.

Genuine massless mixed-symmetry fields [25–34, 36–42], i.e. those having at least two
different nonzero weights s1 �= s2 �= 0, have two distinctive features in Minkowski space: (i)
there are more than one gauge parameter (gauge parameters are counted by the symmetry type);
(ii) the gauge symmetry is reducible, meaning that one can transform the gauge parameter ξ 1

as δξ 1 = ∂ξ 2 so that δφ = ∂δξ 1 ≡ 0 for such δξ 1; ξ 1 and ξ 2 are referred to as the first- and
second-level gauge parameters, respectively. There can be arbitrary many levels in general.
For massless fields in Minkowski space there are as many levels as the number of nonzero
weights in S.

In what follows we restrict ourselves mainly to the gauge fields, which are presented in
Minkowski space by massless fields and, as we will see, there are more different types of
gauge fields in (anti)-de Sitter space. Massless or, more generally, gauge fields seem to be
more fundamental than massive ones.

The absence of an effective mechanism to control physical degrees of freedom complicates
the study of massive fields, even at the linear level [75]. The constructive idea, first realized
for spin-s fields in [62], is to reformulate massive fields as gauge theories with Stueckelberg
(algebraic) gauge symmetries. The Lagrangians [27, 29, 30, 40, 42, 62] of massive fields
are the sums of Lagrangians of massless fields coupled together via low derivative terms.
The number of physical degrees of freedom can be easily controlled at the nonlinear level by
requiring the vertices to be gauge invariant [76–78]. Despite technical problems, there is no
doubt that the approach can be generalized to the fields of any spin [40]. There should also be
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a yet unknown Higgs-type mechanism allowing us to produce massive fields by breaking the
higher-spin symmetries of massless fields [15, 79, 80].

To deform Minkowski mixed-symmetry gauge fields to (anti)-de Sitter space turned out
to be a highly nontrivial problem [52–54, 63, 64], having revealed a great deal of peculiar
properties. Only massive fields can be deformed to (A)dSd without any obstructions.

First, the cosmological constant plays the role of the mass parameter in field equations.
Therefore, the massless field ought to be associated not with the one satisfying �φ = 0 but
the one with the wave equation (� + · · λ2)φ = 0 that has a proper gauge invariance, which
guarantees the correct number of degrees of freedom propagating on-mass-shell. The gauge
invariance appears generally for the nonzero coefficient in front of λ2.

Second, the (A)dSd ‘Wigner little algebra’ is so(d − 1) both for massless and massive
fields [52–54]. Therefore, it is not possible for the wave equation to be invariant under all
gauge symmetries coming from Minkowski space whatever the mass-like coefficient in front
of λ2 is. It is the commutativity of translations of iso(d−2), which is the massless Wigner little
algebra in Minkowski space, that allows for multiple gauge symmetries for mixed-symmetry
fields in Minkowski space. It turns out that only one (but any) of the Minkowski gauge
symmetries can be maintained in (A)dSd [52–54]. Because of having less gauge symmetries
a gauge field in (A)dSd has more degrees of freedom than the Minkowski massless field with
the same spin. Therefore, it is not possible to deform a generic massless field to (A)dSd

smoothly, i.e. without discontinuity in the number of physical degrees of freedom [54].
The third feature of (A)dSd , discovered for a spin-2 field in [55–61]4, is the existence of a

new type of fields: partially-massless fields whose gauge transformation law contains higher
derivatives, and hence they have more degrees of freedom than the massless fields. There is
no room for higher-derivative gauge symmetry in Minkowski space since the corresponding
iso(d − 1, 1)-module realized on the solutions of the wave equation would be reducible. Due
to the noncommutativity of the (A)dSd -translations the quotient module becomes irreducible.

The full classification of (A)dSd gauge fields is obtained by collecting different types of
massless and partially-massless fields. N families of gauge fields in (A)dSd are associated
with each massless spin-S field in Minkowski space [68], where N is the number of gauge
symmetries in Minkowski space. The first field of each family is called massless because of
the first-order gauge transformation law. The fields from the rest of each family contain higher
derivatives in the gauge transformations and are called partially-massless; the maximal depth
of (partially)-masslessness, which counts the number of derivatives in the gauge transformation
law, is determined by the Young diagram S.

Since the field potentials φS(x) are world tensors, which are analogous to the metric field
gμν , the approach is referred to as metric-like. There exists a more powerful approach
to gravity in which the gravitational field is represented by a local frame ea

μ dxμ and
Lorentz spinconnection ωa,b

μ dxμ. The frame-like approach to gravity turned out to be more
fundamental since it is an approach that allows introducing the gravitational interactions of
fermionic fields. For massless spin-s fields the frame-like approach, namely its profound
extension known as the unfolded approach [3–5], turned out to be more fundamental too.

The challenging problem is to construct and classify nonlinear theories involving fields
of any spin. The only full classical nonlinear theory known up to date contains totally
symmetric massless fields [1, 2, 81]. Its distinguishing features are as follows: (i) the
theory was constructed within the unfolded approach; (ii) consistent interactions require a
nontrivial cosmological constant λ2 �= 0 [82]; (iii) the underlying symmetry algebra is a certain

4 The very term ‘partially-massless’ was introduced in [58].
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infinite-dimensional extension of the spacetime symmetry algebra satisfying the admissibility
condition [10–12].

The unfolded approach is a reformulation of field equations in terms of free differential
algebras [6], which are the categorial extension of the Lie algebra. The fields within the
unfolded approach are differential forms of various degrees with values in some representations
of the space symmetry algebra g, giving rise upon decomposing with respect to the Lorentz
subalgebra so(d − 1, 1) of g to differential forms with fibre Lorentz indices, i.e. to frame-like
fields. The connections WA

q proposed for the description of gauge fields in (A)dSd form the
gauge module for the corresponding unfolded system.

In this paper we extend the results of [65–67] and construct the manifestly (A)dSd -
covariant description for the arbitrary-spin gauge field in (A)dSd in terms of a single connection
of the (anti)-de Sitter algebra g, which is so(d, 1) (de Sitter) or so(d − 1, 2) (anti-de Sitter).
All auxiliary fields turn out to be automatically included in the connection of g. There are two
successive reductions of the (A)dSd -covariant formulation that yield the Lorentz-covariant
frame-like formulation and, then, the metric-like formulation.

Below, with the example of a massless totally symmetric field of spin-s, we illustrate the
evolutionary chain, which is opposite to the reductions just mentioned,

Lorentz metric-like −→ Lorentz frame-like −→ (A)dSd connection.

The gauge potential for a totally symmetric spin-s field is a rank-s symmetric tensor field
φμ1μ2...μs

subjected to the double-trace constraint [83]

ην1ν2ην3ν4φν1ν2ν3ν4μ5μ6...μs
≡ 0. (1)

The correct number of physical degrees of freedom is guaranteed by gauge symmetry

δφμ1...μs
= Dμ1ξμ2...μs

+ permutations (2)

with a rank-(s − 1) symmetric traceless gauge parameter ξμ1...μs−1 . It is worth noting that
neither the double-trace constraint nor the gauge invariant equations are self-evident in the
metric-like approach, not to mention general mixed-symmetry fields.

Similar to a spin-2 field, a spin-s field can also be described within the frame-like approach
[84]. The generalized frame field is a one-form5 ea(s−1)

μ dxμ ≡ e
a1...as−1
μ dxμ that is symmetric

and traceless in its (s − 1) fibre indices of the Lorentz algebra, i.e. it takes values in the
irreducible representation of so(d − 1, 1) labelled by the Young diagram s−1 , which for
s = 2 reduces to a vector-valued one-form ea

μ dxμ. The linearized gauge transformations read
(ha

μ is a background vielbein field)

δea(s−1)
μ = Dμξa(s−1) + hb

μξa(s−1),
b, (3)

where the zero-form ξa(s−1) is a gauge parameter associated with the generalized frame.
The shift-symmetry gauge parameter ξa(s−1),b represents the generalized local Lorentz
transformations; it takes values in the irreducible representation of so(d −1, 1) labelled by the
Young diagram s−1 . The gauge field associated with ξa(s−1),b is a one-form ωa(s−1),b

μ dxμ.
The field strength

Ra(s−1) = Dea(s−1) + hb ∧ ωa(s−1),
b (4)

is invariant not only under ξa(s−1) and ξa(s−1),b transformations but also under certain algebraic
transformations of ωa(s−1),b

μ dxμ so that the full gauge law reads [84]

δωa(s−1),b
μ = Dμξa(s−1),b + hc

μξa(s−1),b
c, (5)

5 A group of k indices in which a tensor is symmetric is denoted by one letter with the number of indices indicated
in parentheses, e.g. a(k) ≡ a1a2 . . . ak .
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where ξa(s−1),bb is a zero-form taking values in the irreducible representation of so(d − 1, 1)

labelled by s−1 . The gauge parameter ξa(s−1),bb suggests [85] introducing a one-form gauge
field ωa(s−1),bb

μ dxμ associated with it. The process continues until the gauge field ωa(s−1),b(s−1)

taking values in s−1
s−1 , so that the full list of the frame-like fields for a massless spin-s field

reads [85]

ea(s−1)
μ ωa(s−1),b

μ ωa(s−1),bb
μ . . . ωa(s−1),b(s−2)

μ ωa(s−1),b(s−1)
μ . (6)

The fields having more than one index in the second group are called extra inasmuch as these
fields are expressed in terms of higher derivatives of the frame field. The extra fields decouple
at the free level; however, they play an important role in the interacting theory [1, 2, 81, 65].

In [65] it was realized that the collection of fields (6) comes out of a single connection one-
form of the (anti)-de Sitter algebra that takes values in an irreducible representation labelled
by a rectangular two-row Young diagram of length (s − 1), i.e.

s− 1
s− 1 , WA(s−1),B(s−1)

μ dxμ −→ (6) −→ δφμ(s) = Dμξμ(s−1). (7)

In [66] the (A)dSd -covariant formulation in terms of certain connections of the (anti)-de
Sitter algebra was proposed for fields of the series (S, q = 1, t = 1) .

Later, it was recognized in [67] that a partially-massless spin-s field with t derivatives
in the gauge transformation law can be described by a single connection with values in
irreducible representation of the (anti)-de Sitter algebra that has the symmetry of a two-row
Young diagram, the lengths of rows being (s − 1) and (s − t),

s− t
s− 1 , WA(s−1),B(s−t)

μ dxμ −→ δφμ(s) =
t︷ ︸︸ ︷

Dμ . . . Dμ ξμ(s−t) + · · · (8)

Thus, here comes the question, brought up in the introduction, of the correspondence
between the gauge fields in (A)dSd and the connections of the (anti)-de Sitter algebra. In this
paper we give the complete answer.

1. Wave equations and representation theory in Minkowski and (A)dSd

Field theory requires (unitary) irreducible representations of the spacetime symmetry algebra
g that are referred to as massive or massless fields to be realized on the solutions of certain
wave equations imposed on tensor fields over the spacetime manifold. Below g is iso(d−1, 1),
so(d, 1) or so(d − 1, 2).

As has been already mentioned in the introduction, it is most natural to describe a spin-S
field by its potential φS that is a tensor field whose symmetry is determined by S considered
as a diagram of the Lorentz algebra. On the other hand, given a tensor field φS having the
symmetry of some Young diagram S, it can be referred to as a spin-S field if the proper field
equations that single out the physical polarization tensor having the symmetry of S are to be
imposed later on. The physical polarization tensor can be either of so(d − 2) or so(d − 1)

depending on the field type (massless or massive) and the spacetime in question (Minkowski
or (A)dSd ).

Given a mass m2 and a spin S, say S = Y{s1, . . . , sp}, let D(m2; S) be a g-module that is
singled out of the tensor field φS ≡ φa(s1),...,u(sp)(x) by virtue of6

6 Recall that a group of k indices in which a tensor is symmetric is denoted by one letter with the number of
indices indicated in parentheses, e.g. a(k) ≡ a1a2 . . . ak . The symmetrization over (groups of) indices denoted by
the same letter is implied, e.g. c, b(n), c(k) = 1

(k+1)!

∑
σ cσ(1), b(n), cσ(2) . . . cσ(k+1), which is used to impose Young

conditions in (1.3).
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(� +m2)φa(s1),...,u(sp) = 0, (1.1)

Dmφa(s1),...,mc(si−1),...,u(sp) = 0, i = 1, . . . , p, (1.2)

φa(s1),...,b(si ),...,bc(sj −1),...,u(sp) ≡ 0, i, j = 1, . . . , p, i < j, (1.3)

ηmmφa(s1),...,mmc(si−2),...,u(sp) ≡ 0, i = 1, . . . , p, (1.4)

ηmmφa(s1),...,mb(si−1),...,mc(sj −1),...,u(sp) ≡ 0, i, j = 1, . . . , p, i �= j, (1.5)

where � ≡ DmDm and Dm is the covariant derivative. The constraints fall into two classes:
algebraic ones (1.3)–(1.5), which ensures the algebraic irreducibility of φS, i.e. the Young
symmetry (1.3) and tracelessness (1.4)–(1.5), and differential ones (1.1)–(1.2), which put the
field on mass-shell (1.1) and exclude low spin states (1.2).

The Young symmetry condition (1.3) is that the symmetrization of all indices from the ith
group of indices with one index from the j th group provided i < j must vanish. It guarantees
that the indices are irreducible under the action of the permutation group and together with the
vanishing trace conditions (1.4)–(1.5) implies that the tensor is an irreducible Lorentz one.

The Cauchy data are given by one complex function f a(s1),...,c(sp)(p) of (d − 1) variables
that takes values in the irreducible representation of so(d − 1) that is characterized by the
same Young diagram S as the spin.

An irreducible g-module that will be referred to as the massive or massless spin-S field is
denoted by H(m2; S). Its relation to D(m2; S) depends largely on the spacetime in question,
i.e. on the symmetry algebra g, and on the value of the mass parameter m2.

Minkowski space, g = iso(d − 1, 1). For the Minkowski case, if m2 > 0 an irreducible
iso(d − 1, 1)-module H(m2; S) that is referred to as a massive spin-S field with mass m2

is realized on the positive-frequency solutions of (1.1)–(1.5); D(m2; S) is identified with
H(m2; S) directly, D(m2; S) = H(m2; S).

At m2 = 0, D(m2; S) becomes reducible, signalling the appearance of some gauge
symmetry. The gauge symmetry can be identified with certain modules D(0; Yi ), where Yi

determines the symmetry of gauge parameters. For the general case the gauge symmetry may
become reducible, the effect being most obvious for antisymmetric p-form fields. Moreover,
for reducible gauge symmetries there can be more than one gauge parameter at some level in
general.

To be precise, a massless spin-S field H(0; S) is defined by the exact sequence

0 −→ �p −→ · · · −→ �2 −→ �1 −→ D(0; S) −→ H(0; S) −→ 0, (1.6)

where �r represents the gauge symmetry at the level r,

�r =
⊕

k1+···+kN=r
k1=0,1;...;kp=0,1

s1−k1�s2−k2,...,sp−1−kp−1�sp−kp

D(0; Y{s1 − k1, . . . , sp − kp}).

(1.7)

The number of gauge parameters at the first level is equal to the number of ways in which
one cell can be removed from S without violating the Young conditions, i.e. it is equal to the
number of groups of rows having equal length. There is only one gauge parameter at the
deepest level r = p corresponding to k1 = · · · = kp = 1, whose Young diagram is obtained
by removing one cell from each row of S, i.e. Y{s1 − 1, s2 − 1, . . . , sp − 1}.

Due to the presence of gauge symmetry the physical degrees of freedom are no longer
classified according to the representations of so(d −1). The structure of invariant submodules

8
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is such that an irreducible representation of so(d − 2) with the same symmetry S is realized as
an exact sequence of certain so(d−1)-modules7. Consequently, for m2 = 0 the spin degrees of
freedom are in one-to-one correspondence with finite-dimensional irreducible representations
of so(d − 2).

From the group-theoretical point of view the construction of H(m2; S) is based on the
well-known method of induced representations, see classical work [71] by Wigner for d = 4
and [72] for the review and extension to arbitrary d � 4.

Anti-de Sitter space, g = so(d − 1, 2) [51–54, 68, 86]. In the anti-de Sitter space the
positive and negative frequency solutions of (1.1) can be separated. Therefore, irreducible
representations that are referred to as massive or (partially)-massless fields are identified
with the positive-frequency solutions of D(m2; S) modulo certain pure gauge solutions in the
(partially)-massless case.

For the (anti)-de Sitter case the appearance of gauge symmetry occurs at certain nonzero
values of the mass parameter m2, which are measured in the units of the cosmological constant
and hence tend to zero at the Minkowski limit. These critical values of m2 together with the
structure of the gauge symmetries will be of main importance in what follows.

From the group-theoretical point of view the positive-frequency solutions of D(m2; S) can
be realized as a Harish-Chandra module. The anti-de Sitter algebra g = so(d − 1, 2) admits
a three-graded decomposition g = g−1 ⊕ g0 ⊕ g+1, i.e. [g0, g±1] ⊂ g±1 and [g−1, g+1] ⊂ g0,
with respect to its maximal compact subalgebra g0 = so(2) ⊕ so(d − 1) of so(d − 1, 2). g−1

and g+1 are spanned by the noncompact generators of so(d − 1, 2).
In order to construct a (unitary) irreducible representation of so(d−1, 2) one [51, 87] takes

the vacuum vector |E0, S〉 to be an irreducible representation of g0, E0 being the weight of so(2)

and S being a Young diagram that characterizes an irreducible representation of so(d−1). The
vacuum is annihilated by g−1, i.e. g−1|E0, S〉 = 0. The module D(E0; S) is freely generated
from |E0, S〉 by the positive grade generators g+1, generic vector being g+1g+1 . . . g+1|E0, S〉.
D (E0; S) is identified with the positive-frequency solutions of D(m2; S), where the lowest
weights E0, S of g0 and the mass m2 are related by [52]

m2 = λ2(E0(E0 − d + 1) − s1 − · · · − sp). (1.8)

Given the mass m2 and the spin S of a field, there are two roots E+
0 , E−

0 of (1.8) related by
E+

0 + E−
0 = d − 1, the maximal one E+

0 corresponding to a massive or a (partially)-massless
field and the minimal one corresponding to its shadow partner [88]. The maximal root is
meant hereinafter when referring to (1.8).

For certain values of the lowest energy E0 there appears a singular vector, i.e. certain
element v of D (E0; S) satisfies itself the condition of being vacuum g−1v = 0. Therefore,
there appears a submodule D (E1; S1) ⊂ D (E0; S) generated from v g+1g+1 . . . g+1v, with
E1 and S1 denoting the energy and the spin of v. From the field-theoretical point of view
equations (1.1)–(1.5) become invariant under certain gauge transformations with the gauge
parameter having the symmetry of S1. E0 depends nontrivially on S1; hence, it is not possible
to have two or more invariant submodules D (E1; S1), D (E2; S2) , . . . simultaneously for the
same value of E0. Therefore [52, 54], equations (1.1)–(1.5) may have one gauge symmetry
only as contrast to the Minkowski case λ2 = 0, in which all submodules appear at the same
value of the mass parameter, m2 = 0, and, hence, a generic mixed-symmetry field has more

7 In the simplest nontrivial case of a spin-1 massless field, by virtue of (1.6) an so(d − 2) physical polarization
vector AI , I = 1, . . . , d − 2, is realized as an so(d − 1) vector presented by the Maxwell potential Aμ subjected
to �Aμ = 0, so that Aμ reduces to a function of (d − 1) variables, and ∂μAμ = 0, so that only (d − 1) of the d
components of Aμ are independent, modulo an so(d −1) scalar ξ , �ξ = 0 representing the on-shell gauge symmetry
δAμ = ∂μξ .
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than one gauge symmetry in Minkowski space. The precise determination of the possible
gauge symmetries is given in section 2.

There is no discrepancy between the number of degrees of freedom for massive fields in
Minkowski and (anti)-de Sitter spaces since the spin degrees of freedom of massive fields are
classified according to representations of the same little algebra so(d − 1). As for massless
fields, only those having all si equal s1 = s2 = · · · = sp, i.e. S is a rectangular diagram, possess
the same number of degrees of freedom both in Minkowski and (anti)-de Sitter spaces; these
are the only fields for which the number of gauge symmetries in Minkowski and (anti)-de Sitter
spaces is equal. For instance, this is the case for symmetric fields p = 1 and antisymmetric
fields s1 = s2 = · · · = sp = 1.

Partially-massless fields are nonunitary in the anti-de Sitter case and split in the Minkowski
limit into a collection of massless fields [62, 68].

de Sitter space, g = so(d, 1). The representation theory of the de Sitter algebra differs
drastically from that of the anti-de Sitter one. The de Sitter algebra mixes all solutions of
(1.1)–(1.5) into one so(d, 1)-module, it not being possible to divide solutions of (1.1)–(1.5)
into positive and negative frequency parts. Nevertheless, the notion of the lowest energy can
be introduced [57].

Despite these difficulties, gauge symmetry for (1.1)–(1.5) appears at the same values of
the mass as determined for the anti-de Sitter case provided the change λ2 −→ −λ2.

2. Gauge fields in (A)dSd

In this section we consider the general case of a spin-S field in (anti)-de Sitter space, where
S is a finite-dimensional irreducible bosonic representation of the (anti)-de Sitter ‘Wigner
little algebra’ so(d − 1), specified by a Young diagram S = Y{s1, . . . , sp}, p � [(d − 1)/2].
For d = 4k + 1 and p = 2k (anti)-self-duality conditions have to be imposed to make
the representation irreducible. We prefer not to go into details concerning (anti)-self-dual
representations and will ignore them. Presented below are the statements that generalize
numerous results of [51–54, 57, 63, 64], which will be commented further elsewhere [68].

Field theory, on-shell. The field-theoretical statement is that given an irreducible field potential
φS ≡ φa(s1),b(s2),...,u(sp) having the symmetry of S = Y{s1, . . . , sp}, for any q ∈ [1, p] provided
sq − sq+1 > 0 and8 any t ∈ [1, sq − sq+1] there exists m2,

m2 = λ2((sq − t − q)(d + sq − t − q − 1) − s1 − s2 − · · · − sp) (2.1)

such that the wave equation (1.1) for field φS is invariant under the gauge transformations

δφa(s1),b(s2),...,u(sp) =
t︷ ︸︸ ︷

Dc . . . Dc ξa(s1),...,b(sq−1),c(sq−t),...,u(sp) + · · · (2.2)

where ‘ . . . ’ stands for certain lower derivative terms and for the terms that restore the Young
symmetry properties, if needed. The gauge parameter is an irreducible tensor having the
symmetry of Y{s1, . . . , sq−1, sq − t, sq+1, . . . , sp}. Gauge transformations (2.2) are consistent
with the transversality constraints (1.2), Young symmetry conditions (1.3) and with the trace
constraints (1.4) and (1.5) provided that the gauge parameter itself is transverse, traceless and
obeys the wave equation with

mξ
2 = λ2((sq − q)(d + sq − q − 1) − s1 − s2 − · · · − sp + t). (2.3)

8 It is convenient to set sp+1 = 0. The condition means that q refers to a row from which at least one cell can be
removed so that the resulted picture is still a Young diagram.
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The order of derivative of gauge transformations is equal to t, with t = 1 and t > 1
corresponding to massless fields and partially-massless fields, respectively. Arbitrary mixed-
symmetry partially-massless fields in AdSd have also been discussed in [63, 64]. Important is
that no further extension of the gauge symmetry is possible. For t = 1 the parameter q refers
to the Minkowski gauge symmetry among �1 (1.7) that is allowed to survive in (anti)-de Sitter
space.

Roughly speaking, for a given spin S there are as many different gauge fields as the ways
in which a number of cells can be removed from any one row of S provided the resulted
diagram is still a Young diagram (the length of a row is a nonincreasing function of row).

Group theory. Providing us with the description of the higher-level gauge symmetries, the
group-theoretical statement is that given an so(d − 1)-Young diagram S = Y{s1, . . . , sp}, for
any q ∈ [1, p] provided sq − sq+1 > 0 and any t ∈ [1, sq − sq+1] there exists the vacuum
energy E0,

E0(q, t) = d + sq − t − q − 1 (2.4)

such that D (E0; S) is reducible, and the irreducible representation H (E0; S), which is referred
to as a massless or partially-massless field for t = 1 and t > 1, respectively, is defined by the
following exact sequence:

0 → D(Eq; Sq) −→ · · · −→ D(E1; S1) −→ D(E0; S0) −→ H(E0; S0) → 0, (2.5)

where the lowest weights of so(2) ⊕ so(d − 1) are defined as

Ei =
{
d + sq − t − q − 1, i = 0,

d + sq−i+1 − (q − i + 1) − 1, i = 1, . . . , q,
(2.6)

Si =

⎧⎪⎪⎨
⎪⎪⎩

Y{s1, . . . , sp} ≡ S, i = 0,

Y{s1, s2, . . . , sq−1, sq − t, sq+1, . . . , sp}, i = 1,

Y{s1, . . . , sq−i , sq−i+2 − 1, . . . , sq − 1, sq − t, sq+1, . . . , sp}, i = 2, . . . , q − 1,

Y{s2 − 1, s3 − 1, . . . , sq − 1, sq − t, sq+1, . . . , sp}, i = q.

(2.7)

In contrast to the Minkowski case (1.7), there is only one gauge parameter/submodule at
each level. The lowest energy (2.4) is related to the mass (2.1) in accordance with (1.8), and
the same is true for the gauge parameters/submodules of the exact sequence (2.5). If the field
potential is taken to have the symmetry of S0 ≡ S, as is implied throughout this paper, the
gauge parameter at the level i has the symmetry of Si .

The Casimir of D (E0; S0) and, if E0 is one of the critical values (2.4), of H (E0; S0) is
given by

C2 = E0(E0 − d + 1) +
i=p∑
i=1

si(d + si − 2i − 1). (2.8)

Towards an off-shell theory. In order for gauge symmetry to be realized off-shell the trace
constraints (1.4) and (1.5) have to be relaxed, giving rise to the problem of extension of the field
content. Indeed, the trace constraints are not consistent with the relaxation of transversality
constraints (1.2) for gauge parameters9. If the gauge symmetry is reducible, similar arguments

9 In principle, one may work in terms of traceless potentials and differentially constrained parameters [89, 90]. One
more way to keep potentials irreducible is to impose the projector onto the traceless part in the gauge transformations.
However, in the latter case there exist no gauge invariant off-shell equations even for totally symmetric spin-s fields.
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lead to the relaxation of trace constraints for gauge parameters at deeper levels. Only the gauge
parameter at the deepest level can be an algebraically irreducible Lorentz tensor. For the case
of Minkowski massless fields, the extension (1) for a spin-s field was found by Fronsdal in [83],
and the extension for mixed-symmetry fields was conjectured by Labastida in [26], recently
proved to be correct in [33]. It has a simple interpretation within the unfolded and frame-like
approaches [36, 38].

Because massive fields are not gauge fields, no extension of the field content is needed for
an off-shell version. However, to construct a Lagrangian the field content has to be extended
with the supplementary fields [91, 75]. As for the fields in (anti)-de Sitter space, the extension
for (S, q = 1, t = 1) fields may be obtained from the frame-like description of [66]. As
a by-product, we extend this result to the case of arbitrary-spin (partially)-massless fields in
(anti)-de Sitter space.

3. Background geometry

In this section we recall the description of the background geometry in terms of vielbein
and Lorentz spinconnection, which can be recognized as the Yang–Mills connections of the
spacetime symmetry algebra. For the case of (anti)-de Sitter space, whose symmetry algebra
is simple, there are additional simplifications.

Background geometry, Lorentz-covariantly. As is well-known, instead of working with the
metric tensor gμν one [92] may introduce a nonholonomic basis defined by a nonsingular
matrix ha

μ, called the tetrad/vielbein/frame field. The index a of the tetrad ha
μ is a Lorentz

one; it is raised and lowered with the invariant tensor ηab of the Lorentz algebra. To define
a covariant derivative the Lorentz spinconnection a,b

μ = −b,a
μ is to be introduced. Major

achievement is in that a,b ≡ a,b
μ dxμ and ha ≡ ha

μ dxμ were recognized [93, 69, 70] to
be the Yang–Mills fields associated with the generators La,b and Pa of Lorentz rotations and
translations, respectively. Generators La,b and Pa form iso(d − 1, 1), so(d, 1) or so(d − 1, 2).
The Minkowski, de Sitter or anti-de Sitter background geometry can be described by the zero
curvature (flatness) condition d� + [�,∧�] = Ra,bLa,b + T aPa = 0 for the Yang–Mills
connection � = a,bLa,b + haPa , where

T a = dha + a,
b ∧ hb = 0, (3.1)

Ra,b = da,b + a,
c ∧ c,b ± λ2ha ∧ hb = 0. (3.2)

On condition that ha
μ is a nonsingular matrix, any solution of (3.1) and (3.2) describes

Minkowski (λ2 = 0), de Sitter (+λ2) or anti-de Sitter10 (−λ2) geometry and provides us
with the basis of a fibre space ha

μ and with Lorentz spinconnection a,b
μ .

For the case of the Minkowski geometry a simple solution of (3.1) and (3.2) is given
by Cartesian coordinates ha

μ = δa
μ, a,b

μ = 0. It is assumed further that ha
μ and a,b

μ obey
(3.1) and (3.2) but the advantage is that no explicit solution is needed either to write down
field equations or to construct actions, which is the most effective for the (anti)-de Sitter case
[65, 66, 85, 94, 95].

10 In the expressions similar to (3.2), the upper/lower sign corresponds to the de Sitter/anti-de Sitter case hereinafter.
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With the help of a,b
μ one defines the Lorentz-covariant derivative of differential forms

with values in any finite-dimensional representation of so(d − 1, 1), i.e. having some fibre
Lorentz indices, e.g., for a degree-q form11 T ab...

q ≡ T ab...
μ1μ2...μq

dxμ1 dxμ2 . . . dxμq

DT ab...
q = dT ab...

q + a,
mT mb...

q + b,
mT am...

q + · · · . (3.3)

Background geometry, (A)dSd -covariantly [70]. Since the (anti)-de Sitter algebra is simple
and there exists an invariant tensor ηAB , (3.1) and (3.2) are simplified to

d�A,B + �A,
C�C,B = 0, (3.4)

where �A,B
μ dxμ = −�B,A

μ dxμ, A,B, . . . = 0, 1, . . . , d , is a connection of the (anti)-de Sitter
algebra. The Lorentz-covariant equations (3.1) and (3.2) can be recovered from (3.4) if one
makes identifications

�a,• = λha, �a,b = a,b, (3.5)

where • denotes the extra value of the so(d − 1, 2) or so(d, 1) vector index as compared to
the so(d − 1, 1) vector index, i.e. A = a, •; a = 0, 1, . . . , d − 1; • = d.

The splitting (3.5) can be made manifestly (A)dSd -covariant [65, 70] if one identifies the
Lorentz algebra as a stability algebra of a vector compensator field VA, which is convenient to
normalize to unit length,

V BVB = ∓1. (3.6)

The generalized vielbein field EA
μ dxμ,

λEA = D�V A = dV A + �A,
BV B, (3.7)

is assumed to have the maximal rank, which is d. Therefore, EA defines a nonsingular
vielbein field orthogonal to VA inasmuch as EBVB = 0 by virtue of (3.7) and (3.6). The
Lorentz-covariant derivative D = d + �L is defined with respect to the Lorentz connection
�

A,B
L ,

�
A,B
L = �A,B ∓ λ(V AEB − EAV B). (3.8)

Both the compensator and the generalized vielbein are Lorentz-covariantly constant

DV A = 0, DEA = 0. (3.9)

One can always choose the ‘standard gauge’ for the compensator field VA = δA
• ; then

λEA = �A,•, E•
μ = 0 and �

a,b
L = �a,b, which coincides with (3.5).

It is worth stressing that the flatness condition (3.4) can simply be rewritten as D�
2 = 0.

4. Gauge connections of (anti)-de Sitter algebra

Having (anti)-de Sitter space as a background, worth being scrutinized thoroughly are the
generalized Yang–Mills connections of the (anti)-de Sitter algebra that are differential forms
of arbitrary degree with values in any finite-dimensional module of the (anti)-de Sitter algebra.

Let WAB...
q be a q-form over (A)dSd with values in any tensor representation of the

(anti)-de Sitter algebra, i.e. having some fibre tensor indices A,B, . . . ranging 0, . . . , d. Fibre
indices may have some symmetry and/or trace properties ensuring algebraic irreducibility, if

11 In what follows the form degree is indicated by the bold subscript, except for the connections describing the
background geometry, and the wedge symbol ∧ is omitted.
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needed. With the help of the flat background connection �A,B one defines the (anti)-de Sitter
covariant derivative12 D� of WAB...

q

D�WAB...
q = dWAB...

q + �A,
MWMB...

q + �B,
MWAM...

q + · · · . (4.1)

D� preserves symmetry and/or trace properties.
Given a q-form WAB...

q one may introduce the (q + 1)-form field strength RAB...
q+1 =

D�WAB...
q , which has the same symmetry/trace properties as WAB...

q . The field strength turns
out to be invariant under the gauge transformations δWAB...

q = D�ξAB...
q−1 by virtue of the

flatness condition D�
2 = 0 (3.4), where the gauge parameter is a (q − 1)-form with values

in the same module as WAB...
q . For the same reason WAB...

q is invariant under the second-level
gauge transformations δξAB...

q−1 = D�ξAB...
q−2 and so on until δξAB...

1 = D�ξAB...
0 . In addition, the

field strength satisfies the Bianchi identities D�RAB...
q+1 = 0.

As we have already stated in the introduction, if the form degree and the symmetry/trace
properties of the fibre indices are chosen properly, WAB...

q is a natural framework for describing
gauge fields in (anti)-de Sitter space, the idea suggested first in [65] for (Y{s}, 1, 1) fields, in
[66] for the (S, 1, 1) fields and in [67] for (Y{s}, 1, t) fields. It has a nice property of being
manifestly (anti)-de Sitter covariant. A single q-form connection incorporates the whole set
of physical and auxiliary Lorentz fields, which is obtained by taking various projections with
respect to the compensator VC.

Since it is sufficient to give consideration only to irreducible representations, in what
follows all differential forms take values in irreducible tensor representations of the (anti)-de
Sitter algebra, leaving spin-tensor representations out of the key target of the paper. This means
that (i) the fibre indices have the symmetry of some Young diagrams and (ii) the contraction
of any two fibre indices with the invariant tensor ηAB of the (anti)-de Sitter algebra vanishes
identically, i.e. fibre tensors are traceless.

As we have already done for Lorentz tensors, it is convenient to take all tensors in the
symmetric basis, meaning that tensor indices consist of groups with the manifest symmetry
among the indices from any group13. For instance, a q-form with values in the irreducible
tensor representation A of the (anti)-de Sitter algebra that is characterized by the Young
diagram A = Y{s1, . . . , sn},

WA(s1),B(s2),...,U(sn)
μ1μ2...μq

dxμ1 dxμ2 . . . dxμq ≡ WA
q , (4.2)

is symmetric in each group of indices A1 . . . As1 , . . . , U1 . . . Usn
, satisfies the Young symmetry

condition14

W
A(s1),...,B(si ),...,BC(sj −1),...,U(sn)
q ≡ 0, i, j = 1, . . . , n, i < j (4.3)

and the contraction of any two fibre indices with ηCD is identically zero.
As illustrated below, any manifestly (anti)-de Sitter covariant formulation in terms of some

gauge connection WA
q can be demoted first to the Lorentz-covariant frame-like formulation

by decomposing the (anti)-de Sitter module A into irreducible Lorentz modules with the
help of the compensator VC, with a collection of q-form connections of the Lorentz algebra
arising at this stage. One of those Lorentz connections is the generalized frame-like field that

12 Spin tensors can be considered on equal footing, and the covariant derivative contains an extra term 1
8 �A,B [γA, γB ],

where γA are the generators of the Clifford algebra γAγB + γBγA = 2ηAB .
13 All results obtained in the paper do not depend on the choice of a basis for mixed-symmetry tensors, of course.
Instead of the separation of indices into groups of symmetric ones, one may single out the groups of anti-symmetric
indices.
14 As before, a group of symmetric indices is denoted by one letter, the number of symmetric indices placed in
brackets; indices from different groups denoted by the same letter are to be symmetrized.
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incorporates the dynamical metric-like field φS. The rest of fields are various generalized
Lorentz connections representing auxiliary fields. Then, it can be demoted even further, to the
metric-like formulation, by converting all differential forms with fibre indices of the Lorentz
algebra, obtained at the first stage, into fully world or fully fibre tensors with the help of
the background vielbein ha

μ or its inverse h
μ
a , and, then, by fixing the vast algebraic gauge

symmetry that we will see is present in the theory.

(A)dSd-covariant
frame-like

V A

−−→ Lorentz-covariant
frame-like

hµ
a−→

ha
µ

Lorentz-covariant
metric-like

For instance, in the case of a massless spin-(s � 2) field the demotion sequence is shown in
the introduction (7).

From (A)dSd -covariant to Lorentz-covariant, dimensional reduction. The Lorentz algebra is
defined as the subalgebra of the (anti)-de Sitter algebra g annihilating the compensator VC. The
result of the restriction of an irreducible g-module A = Y{s1, . . . , sn} to its Lorentz subalgebra
is easy to formulate in terms of Young diagrams:

Resg

so(d−1,1)A −→
k1=s1⊕
k1=s2

. . .

kn−1=sn−1⊕
kn−1=sn

kn=sn⊕
kn=0

Ak1,...,kn−1,kn
, (4.4)

where Ak1,...,kn−1,kn
= Y{k1, . . . , kn−1, kn}. Thus, the result of the restriction of Y is given

by various Young diagrams obtained by removing an arbitrary (possibly zero) number of
cells from the right of rows of Y provided that each truncated row is not shorter than the
next row of the initial diagram Y. It is also useful to introduce a V-grade g that is equal to
k1 + · · ·+kn −s2 −· · ·−sp for the element Y{k1, . . . , kn−1, kn}, so that g = 0 for the element of
the lowest rank and g = s1 for the element of the highest rank. The Lorentz subalgebra leaves
each Y{k1, . . . , kn} invariant. The translation generators act between different Y{k1, . . . , kn},
mapping a grade-g module to the modules at grade (g ± 1).

Therefore, the (A)dSd gauge connection WA
q is reduced to a collection of gauge

connections of the Lorentz algebra, which is V-graded,

WA
q ←→ ω

Ak1 ,...,kn

q ,

k1 = s2, . . . , s1,

. . . ,

kn−1 = sn, . . . , sn−1,

kn = 0, . . . , sn.

(4.5)

It is obvious that an irreducible tensor RX of the (A)dSd -algebra that is fully orthogonal to the
one-dimensional subspace defined by the compensator is equivalent to an irreducible tensor of
the Lorentz algebra that is defined by the same Young diagram X. Therefore, the irreducible
(A)dSd -tensor T A has the decomposition into irreducible tensors of the Lorentz algebra of the
form

T A =
∑

k1,...,kp

⎛
⎝ s1−k1︷ ︸︸ ︷

V . . . V . . .

sn−kn︷ ︸︸ ︷
V . . . V T Ak1 ,...,kn + perm + η

⎞
⎠ , (4.6)

where each tensor T Ak1 ,...,kn of the (anti)-de Sitter algebra is fully orthogonal to VC, i.e. the
contraction of any index with VC vanishes. ‘perm’ stands for the terms with permuted indices
and η stands for the terms with ηAB , which are present in general since T A is subjected to
certain symmetry and trace conditions15.

15 For example, a rank-3 traceless tensor T AA,B having the symmetry of decomposes as T AA,B = RAA,B +
V ARA,B +

[
V ARAB − V BRAA

]
+
[(

V AV ARB − V AV BRA
) − 1

d
V CVC

(
ηAARB − ηABRA

)]
, where RAA,B , RA,B ,

15
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Let us consider some technical details that allow us to perform the reduction to the
Lorentz-covariant expressions explicitly in terms of tensors.

In tensorial terms, to get the element T Ak1 ,...,kn one contracts (si − ki) compensators with
the ith group of the fibre indices of T A:

T A(k1)A
′(s1−k1),B(k2)B

′(s2−k2),...,U(kn)U
′(sn−kn)

s1−k1︷ ︸︸ ︷
VA′ . . . VA′

s2−k2︷ ︸︸ ︷
VB ′ . . . VB ′ . . . · ·

sn−kn︷ ︸︸ ︷
VU ′ . . . VU ′ . (4.7)

To simplify notation any index contracted with the compensator will be denoted by •, which
is done on account of the fact that we can always choose the standard gauge for VA, as
in (3.5). In the standard gauge, any Lorentz tensor ra(k1),...,u(kn) can simply be embedded
into the tensor RA(k1),...,U(kn) of the (anti)-de Sitter algebra, Ra(k1),...,u(kn) = ra(k1),...,u(kn) and
RA(k1),...,C(ki−1)•,...,U(kn) = 0 for any i = 1, . . . , n.

Therefore, instead of working with V-orthogonal tensors of the (anti)-de Sitter algebra we
can explicitly work in terms of tensors of the Lorentz algebra, for example, in the standard
gauge to get T Ak1 ,...,kn one writes

T a(k1)•(s1−k1),b(k2)•(s2−k2),...,u(kn)•(sn−kn). (4.8)

Despite having the correct number of fibre indices in each group, (4.7) and (4.8) generally
neither have definite Young symmetry nor are orthogonal to VC. On account of this, let us
refer to (4.8)-like expressions as ‘raw’ ones. In order to single out the irreducible Lorentz
tensor having the symmetry of Ak1,...,kn

, (4.7) and (4.8) have to be supplemented with certain
‘perm’- and η-terms.

It is worth noting that any ‘raw’ fibre tensor of the form (4.8) is not generally traceless
with respect to the Lorentz invariant tensor ηab. Any contraction of two Lorentz indices in
(4.8) is equivalent to the contraction of two more compensators modulo the sign factor, which
is (−)+ for (anti)-de Sitter space.

Note also that the contraction of more than (si − si+1) compensators with the ith group of
indices may not vanish identically; it can be expressed as a certain sum of the terms having
no more than (si − si+1) compensators contracted with the ith group.

There are cases for which no ‘perm’-terms are needed, so that contracted with the
compensators ‘raw’ tensor itself satisfies Young conditions. As to (4.2)

Lemma (A). Provided that the ith group of indices, i = k, . . . , n, is contracted with si − si+1

(sn for i = n; si − si+1 may be zero) compensators the resulting tensor has the symmetry
of Y{s1, . . . , sk−1, sk+1, sk+2, . . . , sn}, i.e. as if the kth row is dropped off, and it is Lorentz-
traceless with respect to the indices of the groups k, . . . , n − 1:

ra(s1),..,b(sk−1),c(sk+1),...,u(sn−1) = T a(s1),...,b(sk−1),c(sk+1)•(sk−sk+1),...,u(sn)•(sn−1−sn),•(sn).

Whereas all manifestly (A)dSd -covariant expressions, e.g., the gauge transformation law,
involve the covariant derivative D� only, to reinterpret any (anti)-de Sitter covariant expression
in terms of the Lorentz subalgebra it is convenient to extract the Lorentz-covariant derivative
D out of D� according to (3.8):

δWAB...
q = DξAB...

q−1 ± λV AEMξMB...
q−1 ∓ λEAVMξMB...

q−1 + · · · , (4.9)

and in a similar manner for any other expressions.
By virtue of (3.9), the decomposition (4.6) and the property of being orthogonal to VC are

preserved by the action of D rather than D�. Besides D there are two more operators on the

RAB and RA are irreducible tensors orthogonal to VC having the symmetry of , , and , respectively. An
equivalent statement is that T AA,B decomposes into irreducible Lorentz tensors Raa,b , Ra,b , Raa and Ra that have the
symmetry of , , and and have grades 2, 1, 1 and 0, respectively.
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rhs of (4.9). The first one V ..EM with a free index on the compensator decreases the grade
by 1, and the second one E..VM , which contracts the compensator with the index of the field,
increases the grade by 1.

In terms of ‘raw’ fields (4.8) and the signs for the anti-de Sitter case, (4.9) reads

δWa(k1)•(s1−k1),...,u(kn)•(sn−kn)
q = Dξ

a(k1)•(s1−k1),...,u(kn)•(sn−kn)
q−1

− λ

i=n∑
i=1

(si − ki)hmξ
a(k1)•(s1−k1),...,c(ki )m•(si−ki−1),...,u(kn)•(sn−kn)
q−1

+ λ

i=n∑
i=1

kih
cξ

a(k1)•(s1−k1),...,c(ki−1)•(si−ki+1),...,u(kn)•(sn−kn)
q−1 , (4.10)

where the prefactor (si − ki) is due to the identical permutations of the indices contracted with
the compensator. Instead of ‘raw’ fields one can single out irreducible fields

ωa(k1),...,u(kn)
q = Π

(
Wa(k1)•(s1−k1),...,u(kn)•(sn−kn)

q

)
, (4.11)

where � is a projector containing ‘perm’- and η-terms such that all traces and symmetry
components other than Y{k1, . . . , kn} are removed. Rewritten in terms of irreducible Lorentz
fields, (4.10) reads

δωa(k1),...,u(kn)
q = Dξ

a(k1),...,u(kn)
q−1 − λΠ

( i=n∑
i=1

hmξ
a(k1),...,c(ki )m,...,u(kn)
q−1

)
︸ ︷︷ ︸

σ−
(
ξ

Ak1 ,...,ki +1,...,kn

q−1

)
+ λΠ

( i=n∑
i=1

hcξ
a(k1),...,c(ki−1),...,u(kn)
q−1

)
︸ ︷︷ ︸

σ−
(
ξ

Ak1,...,ki−1,...,kn

q−1

)
, (4.12)

where we omit certain nontrivial coefficients in front of Π. The first and the second operators
in the second line take a field with the symmetry of Y{k1, . . . , ki ± 1, . . . , kn} to the field with
the symmetry of Y{k1, . . . , ki, . . . , kn}; these operators are called σ− and σ+, respectively.
σ− and σ+ are the operators V ..EM and E..VM from (4.9) in terms of the irreducible Lorentz
components. The important property of σ− and σ+ is that they are nilpotent, (σ±)2 = 0.

As can be seen either from (4.10) or from (4.12), the gauge symmetry has both the
differential and the algebraic (Stueckelberg) parts. The latter can be used to gauge away
certain components of the Lorentz connections ω...

q . By the same reason not all of the gauge
parameters ξ ...

q−1 do affect ω...
q because of the reducibility of gauge symmetry.

From Lorentz frame-like to metric-like. Suppose we are given a degree-q form with values in
some irreducible tensor representation X = Y{k1, . . . , kn} of the Lorentz algebra

ωa(k1),b(k2),...,u(kn)
μ1...μq

dxμ1 . . . dxμq . (4.13)

With the help of the inverse background vielbein haμ, haμhb
μ = ηab, all world indices can be

converted to fibre ones (or vice versa with the help of haμ):

ωa(k1),b(k2),...,u(kn)|v1...vq = ωa(k1),b(k2),...,u(kn)
μ1...μq

hv1μ1 . . . hvqμq . (4.14)

The fully fibre tensor is obviously antisymmetric in indices v1, . . . , vq . Since there are
no algebraic conditions between indices a(k1), . . . , u(kn) and indices v1, .., vq , to interpret
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ωa(k1),b(k2),...,u(kn)|v1...vq in terms of irreducible Lorentz tensors is equivalent to taking the
so(d − 1, 1)-tensor product

X ⊗so(d−1,1) Y{
q︷ ︸︸ ︷

1, . . . , 1} (4.15)

of X with a one-column diagram of height q, which represents antisymmetric indices v1 . . . vq .
The simplest way to obtain a degree-q form with fibre indices having the symmetry

of X is to take a degree-zero form CZ with fibre indices having the symmetry of Z =
Y{k1 + 1, . . . , kq + 1, kq+1, . . . , kn}:

ωa(k1),b(k2),...,u(kn)
μ1...μq

= Ca(k1)v1,b(k2)v2,...,c(kq )vq ,...,u(kn)hv1μ1 ∧ · · · ∧ hvqμq
, (4.16)

which is equivalent to the statement that (4.15) contains Z. Due to the anticommutativity of
ha, (4.16) has automatically the symmetry of X, i.e. no Young symmetrizers are needed in the
symmetric basis.

In spite of the fact that the (A)dSd connection WA
q gives rise to a large number of Lorentz

connections, which in their turn give rise to an even larger number of metric-like Lorentz
tensors, all physically relevant components are obtained by virtue of

Lemma (B). Given (4.13) and its fibre version (4.14), the fibre tensor

Ba1(k1+1),...,aq (kq+1),b(kq+1),...,u(kn) = ωa1(k1),...,aq (kq ),b(kq+1),...,u(kn)|a1...aq (4.17)

has the symmetry of Z. Despite having definite Young symmetry B... is not completely traceless;
instead the trace properties are

ηccηccB
a1(k1+1),...,ccccai (ki−4),...,aq (kq+1),b(kq+1),...,u(kn) ≡ 0, i = 1, . . . , q (4.18)

ηccB
a1(k1+1),...,aq (kq+1),b(kq+1),...,ccf (kj −2),...,u(kn) ≡ 0, j = q + 1, . . . , n. (4.19)

Consequently, B... satisfies the Fronsdal–Labastida double-trace constraints for the first
q groups of indices, and is traceless in the rest of the indices. Therefore, the Labastida-like
constraints seem to have come from certain Lorentz connections [38].

The irreducible component of B... with the highest rank, i.e. Z (the highest weight part of
(4.15)), will be of main interest for us because it will be identified with the physical field φS0 ,
and with the gauge parameters thereof ξS1 , . . . , ξSq .

5. Gauge fields versus gauge connections

In order to describe a spin-S, S = Y{s1, . . . , sp}, (partially)-massless field φS whose gauge
parameter ξS1 has the symmetry of S1 = Y{s1, . . . , sq − t, sq+1, . . . , sp}, i.e. it is obtained
by removing t boxes from the qth row of S, let us consider a q-form WA

q with values in the
irreducible tensor representation A of the (anti)-de Sitter algebra:

A ≡ A(S, q, t) = Y{s1 − 1, . . . , sq − 1, sq − t, sq+1, . . . , sp}. (5.1)

So in order to build the Young diagram A of the (anti)-de Sitter algebra from the Young
diagram S of the Wigner little algebra, one removes one cell from the right of rows 1, 2, . . . , q

and inserts after the qth row an extra row of length (sq − t); the rest of the rows of S remain
untouched. In symmetric basis the gauge field explicitly read

W
A1(s1−1),...,Aq(sq−1),B(sq−t),C(sq+1),...,U(sp)
μ1μ2...μq

dxμ1 ∧ dxμ2 ∧ · · · ∧ dxμq . (5.2)
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The gauge transformations at all levels of reducibility together with the manifestly gauge
invariant field strength, satisfying certain Bianchi identities, can be written immediately with
the help of the flat connection D� as

D�RA
q+1 = 0,

RA
q+1 = D�WA

q , δRA
q+1 = 0,

δWA
q = D�ξA

q−1,

δξA
q−1 = D�ξA

q−2,

· · · = · · · ,
δξA

1 = D�ξA
0 .

(5.3)

We will demonstrate that there exists the following ‘embedding’ D (E0; S0) → φS0 →
eL0
q → WA

q , i.e. WA
q decomposes into a collection of the connections of the Lorentz algebra,

among which is eL0
q , referred to as the generalized frame, that contains as the highest weight

part the metric-like dynamical field φS0 with the symmetry of S0 ≡ S and, provided that
certain components of the field strength are set to zero, φS0 satisfies the wave equation with
the correct mass-like term (2.1), which is determined by E0 and S (2.4). Analogously for the
level-i gauge parameter ξSi , D (Ei; Si ) → ξSi → ξ

Li

q−i → ξA
q−i.

(A)dSd down to Lorentz frame-like. It is useful to introduce γi , i = 1, . . . , p + 1,

γi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

si − si+1, i = 1, . . . , q − 1,

t − 1, i = q,

sq − sq+1 − t, i = q + 1,

si−1 − si, i = q + 2, . . . , p,

sp, i = p + 1,

that is defined as the difference between the length of the ith and the (i + 1)th row of A, i.e. it
is equal to the maximal number of the compensators that can be contracted with the ith group
of indices of WA

q according to the restriction rule (4.4), and it is useful to set sp+1 = 0.
The symmetry Li of irreducible fibre Lorentz tensors is given by

Li =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Y{s1 − 1, . . . , sq − 1, sq+1, . . . , sp},
Y{s1 − 1, . . . , sq−1 − 1, sq − t, sq+1, . . . , sp},
Y{s1 − 1, . . . , sq−i − 1, sq−i+2 − 1, . . . , sq − 1,

sq − t, sq+1, . . . , sp},
Y{s2 − 1, . . . , sq − 1, sq − t, sq+1, . . . , sp},

i = 0,

i = 1,

i = 2, . . . , q − 1,

i = q.

(5.4)

The grade g of L0 is (s1 − sq + t − 1), and the grade of Li is (s1 − sq−i+1). For instance, the
physical field φS0 is embedded into the frame field eL0

q that is defined as

e
a(s1−1),...,aq (sq−1),b(sq+1),...,u(sp)
q = Π

[
W

a1(s1−1),...,aq (sq−1),b(sq+1)•(γq+1),...,u(sp)•(γp),•(γp+1)
q

]
,

where Π is a projector that removes the trace part and makes the fibre tensor traceless; the
Young symmetry conditions hold true by virtue of lemma A.

The general rule is that to obtain the Lorentz connection (q − i)-form, which is either the
frame field eL0

q for i = 0 or the level-i gauge parameter ξ
Li

q−i for i > 0 and is embedded either
into WA

q for i = 0 or into ξA
q−i for i > 0, the maximal number of compensators is contracted

with the groups of indices (q − i +1), . . . , (p +1), which guarantees by virtue of lemma A that
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the fibre Lorentz tensor has the symmetry of Li , the projector to the traceless part is needed
though.

Lorentz frame-like down to Lorentz metric-like. The physical field φS0 , the first-level gauge
parameter ξS1 , . . . , and the level-q gauge parameter ξSq are embedded into Lorentz connections
eL0
q , ξL1

q−1, . . . , ξ
Lq

0 as the highest weight parts. For instance, the physical field φS0 is embedded
into eL0

q as

φa1(s1),...,aq (sq ),b(sq+1),...,u(sp) = Π
[
ea1(s1−1),...,aq (sq−1),b(sq+1),...,u(sp)|a1...aq

]
, (5.5)

where Π is the projector to the traceless part since by virtue of lemma B the tensor in brackets
has the symmetry of S but is not traceless. Certain nontrivial traces, which are present in eL0

q ,

ξ
L1
q−1, . . . , ξ

Lq

0 , are necessary for the gauge symmetry to be realized off-shell without making
gauge parameters be subjected to (1.2)-like constraints. It is easy to check that the highest
weight part of ξ

Li

q−i is precisely given by an irreducible Lorentz tensor with the symmetry
of Si .

Equations of motion. Let us now discuss the equations of motion that after imposing certain
gauge lead to (1.1)–(1.5) with the correct mass-like term determined by (S, q, t).

First, note that imposing RA
q+1 = D�WA

q = 0 leads to too strong conditions. Actually,
D�WA

q = 0 can be treated [20] as a sort of cocycle condition, having only pure gauge solutions
WA

q = D�ξA
q−1 unless q = 0 by virtue of the Poincare lemma.

For example, a massless spin-2 field, i.e. the gravity linearized over (A)dSd , can be
described by a single one-form connection WA,B

μ dxμ of the (anti)-de Sitter algebra, which
gives rise to the dynamical16 frame ea

μ dxμ and to the dynamical connection ωa,b
μ dxμ. The field

strength R
A,B
2 = D�W

A,B
1 consists of two Lorentz components Ra

2 = Dea
1 − λhmω

a,m
1 and

R
a,b
2 = Dω

a,b
1 + λhaeb

1 − λhbea
1 , which are the linearized torsion and the Riemann curvature

two-form, respectively. By virtue of Ra
2 = 0, ω

a,b
1 is expressed in terms of the first derivative

of ea
1 . The dynamical second-order equations results from

haμhν
cR

a,c
μν = 0. (5.6)

Obviously, setting the whole field strength R
a,b
2 to zero does not describe any propagating

degrees of freedom. Instead of using the operations beyond the class of differential forms
as in (5.8), we can parameterize the components of the field strength that are allowed to be
nonzero on-mass-shell by the Weyl tensor C

aa,bb
0 that is an irreducible Lorentz tensor having

the symmetry of . Then, (5.8) is equivalent to R
a,b
2 = hmhnC

am,bn
0 , or, in manifestly

(anti)-de Sitter covariant terms, to

R
A,B
2 = ECEDC

AC,BD
0 , (5.7)

where C
AB,CD
0 is an irreducible tensor of the (anti)-de Sitter algebra having the symmetry of

and it is orthogonal to VC.
Turning back to the general case, the operator σ− in (4.12) accounts for the algebraic

and differential relations between the fields, the gauge parameters and the field strengths.
The representatives of the σ−-cohomology groups H(σ−) correspond [38, 63, 64, 85, 96,
97] to dynamical fields (the field is called dynamical if it cannot be gauged away by some
Stueckelberg symmetry and it is not expressed in terms of derivatives of other fields), to

16 This can be somewhat confusing because �A,B describes the background geometry. W
A,B
1 describes the small

fluctuations over the (anti)-de Sitter background.
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differential gauge parameters (which cannot be set to zero by higher level Stueckelberg gauge
symmetry and are not Stueckelberg parameters for some fields) and to independent gauge
invariant equations.

Indeed, it is obvious that the gauge parameters ξ ..
q−1 that do not belong to the kernel of

σ− can be used to gauge away some fields by virtue of (4.12), and those among ξ ..
q−1 that are

σ−-exact can be gauged away by means of reducible gauge symmetries. Thus, differential
gauge parameters are given by representatives of Hq−1(σ−). The analysis can be extended
to reducible gauge symmetries, fields, gauge invariant equations and Bianchi identities. The
gauge parameters that do not belong to H(σ−) are expressed via the derivatives of those in
H(σ−)—this is the way higher derivatives can appear in gauge transformations. The number
of derivatives connecting representatives of Hr (σ−) at grade g and those of Hr+1(σ−) at grade
g′ is equal to (g′ − g + 1). As for ξSi and φS0 , the order of derivative in (reducible) gauge
transformations determined by the grade difference must be equal to the energy difference
(Ei−1 − Ei) (2.4), which is indeed the case.

It is σ− rather than σ+ that should be chosen as a classifying operator since it decreases the
grade, which is associated with the rank of tensors, and hence dynamically relevant quantities
turn out to have the lowest rank. Note that the potential φS is the lowest rank field capable of
describing a spin-S field.

In some special cases certain representatives of σ−-cohomology groups were considered
in [20, 67, 66, 94, 95, 98], the most general result available up to date is in [63, 64], where low
degree representatives for A = Y{s1, s1, s2, . . . , sn} were found. In [97] the σ−-cohomology
groups are calculated in the full generality and it is shown that φS0 , ξS1 , . . . , ξSq and the
equations discussed below are the representatives of the σ−-cohomology groups.

After converting all world indices of differential forms to the fibre indices, σ− turns out to
commute with the total Lorentz algebra acting on all fibre indices and hence the representatives
of σ− are conveniently characterized by Young diagrams of the Lorentz algebra. σ− preserves
the total grade, which is g + form degree. The simplest way for some Lorentz tensor, say with
the symmetry of X, belonging to T

Ag

r to become a representative of σ−-cohomology at degree
r is when there are no components with the symmetry of X both in T

Ag+1

r−1 and T
Ag−1

r+1 , which is
easy to check with the help of the well-known tensor product rules. It is in this way that φS0 ,
ξS1 , . . . , ξSq are the representatives of σ−-cohomology. Note that certain traces needed for
an off-shell description belong to the σ−-cohomology too; these are more hard to find [97].

Due to the Bianchi identity D�RA
q+1 = 0, most of the components of the field strength

either can be set to zero by a nonsingular algebraic field redefinition or are expressed in
terms of derivatives of other components. The analysis of the σ−-cohomology [97] directly
implies that the independent gauge invariant differential equations on φS are given by (1)
certain components of the torsion-like field strength R

L0
q+1, which are the first-order differential

equations that after fixing certain gauge reduce to (1.2); (2) certain components of the field

strengths R
Li

0
q+1 that have one fibre index more as compared to L0 and among which is the

component with the same symmetry S as the dynamical field φS, which after fixing certain
gauge reduces to the wave equation (1.1); (3) the generalized Weyl tensor that is an irreducible
Lorentz tensor with the symmetry of [63, 64, 97]

Y{s1, . . . , sq, sq − t + 1, sq+2, . . . , sp}, (5.8)

embedded into the field strength R
L−1

q+1 with L−1 = Y{s1 − 1, . . . , sq − 1, sq − t, sq+2, . . . , sp}.
What we shall prove is that the wave equation for φS has the correct mass-like term

and, hence, an (S, q, t) gauge field can indeed be described by the single connection WA
q of
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the (anti)-de Sitter algebra. It is obvious that the wave equation is a representative of the
σ−-cohomology.

Towards unfolded equations. In order for the moduleH (E0; S) with E0 determined by (S, q, t)

to be realized on the solutions of equations of motion, one must set to zero all components of the
field strength except for the Weyl tensor together with all components of the field strength that
are expressed in terms of its derivatives, these can be embedded into the irreducible tensor CW

0
of the (anti)-de Sitter algebra having the symmetry of W = Y{s1, . . . , sq − t + 1, sq+1, . . . , sp}
and satisfying certain V-conditions, so that the equations read

R
A(s1−1),...,B(sq−1),C(sq−t),D(sq+1),...,F (sp)

q+1

= EL . . . EMENC
A(s1−1)L,...,B(sq−1)M,C(sq−t)N,D(sq+1),...,F (sp)

0 (5.9)

The Bianchi identities for the field strength imply that DCW
0 cannot be arbitrary. In the spirit

of the unfolded approach the constraints on DCW
0 can be solved in terms of some other field

C
W1
0 , for which DC

W1
0 is also constrained and so on. The Weyl tensor together with its

descendants forms certain infinite-dimensional module C of the (anti)-de Sitter algebra. The
unfolded equations should read

D�WA
q = E . . . ECW

0 , D̃�C
Wi

0 = 0,

where D̃� is the (A)dSd -covariant derivative in the Weyl module. Note that D� acts by the
adjoint action and D̃� acts by the twisted-adjoint action in the well-known case of massless
spin-s fields [1, 2, 65, 81].

The full unfolded equations for massless fields of the series (S, qmin, 1), where qmin is the
number of the first equal rows of S, were constructed in [63, 64]. The explicit realization for
D̃� was obtained for all (S, q, t) fields. More precisely, in [63, 64] the unfolded equations
for massless (S, qmin, 1) fields were obtained by taking the limit of critical mass (2.1) in
the unfolded equations for massive the spin-S field in (A)dSd which result from the radial
reduction of the unfolded equations for the massless spin-S field in Minkowski space found
recently in [38]. We expect that the approach of [63, 64] can give the unfolded equations for
all cases, which remains to be elaborated though.

Mass-like term calculation. That the dynamical field embedded into WA
q is a field of the

Lorentz algebra forces us to single out certain Lorentz components of the field strength in
order to verify that the correct equations are indeed imposed on φS. The explicit use of
projectors similar to (4.12) seems to be very complicated. To get rid of the projectors in
intermediate calculations we work with raw Lorentz tensors that are not generally irreducible.
At the final stage, the component with the symmetry of S is recovered by virtue of lemmas A
and B. All expressions are considered modulo the terms that do not contribute to the highest
weight part of the generalized frame, i.e. to φS, since we are going to recover (1.1).

Let us consider the raw field strengths R and Rk for the raw generalized frame field ẽ

and for its associated raw auxiliary fields ω̃k that have one fibre index more than ẽ. On
the rhs of the expressions for the field strengths we ignore17 the groups of indices that
coincide with a1(s1 − 1), . . . , aq(sq − 1), b(sq+1) • (γq+1), . . . , u(sp) • (γp), •(γp+1). The
form indices μ1, . . . , μq+1 have been converted to the fibre indices a1, . . . , aq+1 so that the
antisymmetrization over a1, . . . , aq+1 is implied. With the signs for the anti-de Sitter case, R

17 To avoid working with numerous indices it is worth using oscillators. However, having all indices written explicitly
it is easier to see certain nontrivial consequences of the Young symmetry conditions and to discard the terms irrelevant
for the mass-like term of φS.
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and Rk read

R ≡ R
a1(s1−1),...,aq (sq−1),b(sq+1),...,u(sp)|a[q+1]
q+1

= DaW...|a[q]
q + λ

k=p+1∑
k=q+1

γkW
...,c(sk)a•(γk−1),...|a[q]
q + · · · , (5.10)

Rk ≡ R
a1(s1−1),...,aq (sq−1),b(sq+1);...;c(sk+1);...;u(sp)|a[q+1]
q+1 = DaW...,c(sk+1)•(γk−1),...|a[q]

q

+ λ

i=p+1∑
i=q+1
i �=k

γiW
...,c(sk+1)•(γk−1),...,f (si )a•(γi−1),...|a[q]
q + λ(γk − 1)W ...,c(sk+1)a•(γk−2),...|a[q]

q

− λ

i=p+δp+1,k∑
i=q+1
i �=k

ηf aW...,c(sk+1)•(γk−1),...,f (si−1)•(γi+1),...|a[q]
q − ληcaW...|a[q]

q

− λ

i=q∑
i=1

ηaiaW...,ai (si−2)•,...,c(sk+1)•(γk−1),...|a[q]
q . (5.11)

Each Rk contains in its decomposition into irreducible Lorentz tensors the component with
the symmetry of S, which can be obtained by symmetrizing a1, . . . , aq with a1(s1 − 1), . . . ,

aq(sq − 1), respectively, and, then, taking the trace with respect to aq+1 and an extra index c
in the kth group of symmetric indices. Denoting this projector πi (R

i), one obtains

πi (R
i) = Dtr(ω̃i) − D · ω̃i + λMiφ

S, (5.12)

where tr(ω̃i) refers to certain trace with respect to one fibre and one form index of ω̃i and D·
stands for the contraction of the Lorentz-covariant derivative with certain fibre index of ω̃i .
The mass-like term Mk is equal to

Mk = γq+1 + · · · + γk−1 + γk − 1 + γk+1 + · · · + γp+1

+ −1 − 1 . . . . − 1︸ ︷︷ ︸
q

−(γq+1 + 1) − · · · − (γk−1 + 1) + d + sk − q, (5.13)

where the terms in the first line results from σ−-like terms; each term with ηaai , i = 1, . . . , q,

gives (−1), the terms with ηaf where f belongs to the groups i = (q + 1), . . . , (k − 1) give
−(γi + 1); ηac produces (d + sk − q), where for k = p + 1 sk = 0; the rest of terms bring
nothing inasmuch as after taking the trace the indices appear to be rearranged in a way that
has no components with the symmetry of S. (5.13) reduces to

Mk = (d − q − k + sk + sk−1 − δq+1,kt), k ∈ [q + 1, p + 1]. (5.14)

Naively, one might consider only one field strength, say Rk; however, acting this way
nontrivial Young symmetrizers come into play inevitably when expressing ω̃k from the equation
R = 0, (5). To simplify calculations we note that from R = 0 one can easily express a linear
combination of the form

∑i=p+1
i=q+1 γiω̃

i and, hence, the simplest way to obtain the wave equation
on φS is to compute

i=p+1∑
i=q+1

πi (R
i)γi . (5.15)

Note that the field strengths R, Ri obey certain Bianchi identities coming from D�RA
q+1 = 0.

However, (5.18) is independent of the Bianchi identities and can be considered as the dynamical
equation for φS.
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To express
∑i=p+1

i=q+1 γiω̃
i from R = 0 one symmetrizes a1, . . . , aq with a1(s1 − 1), . . . ,

aq(sq − 1), and to express
∑i=p+1

i=q+1 γi tr(ω̃i) one takes the trace. After little algebra one obtains
the wave equation of the form

�φS + D(D · φS + Dtr(φS)) + λ2
i=p+1∑
i=q+1

γiMiφ
S + [D,D]ẽ = 0. (5.16)

The terms in brackets can be set to zero by imposing certain gauge. [D,D]ẽ reads

i=q∑
i=1

(−)i−1[Dai ,Dv] ẽa1(s1−1),...,aq (sq−1),b(sq+1),...,u(sp)|a1...âi ...aqv, (5.17)

and is equal to −λ2 ∑i=q

i=1(d + si − q − 1)φS modulo terms that correspond to certain traces.
Finally, the total contribution to the mass-like term in front of φS reads

m2 = λ2

⎛
⎝i=p+1∑

i=q+1

γiMi −
i=q∑
i=1

(d + si − q − 1)

⎞
⎠ . (5.18)

The direct summation yields (2.1) as desired. There is no need to do individual calculations
for the gauge parameters inasmuch as having a wave equation for φS with the correct mass-like
term and a gauge parameter with the proper symmetry18 there are no solutions other than (2.5).

On the other hand, we can consistently replace q with (q − i), i = 1, . . . , q, in (5.10)
and (5.11). The gauge parameter ξA

q−i will play the role of the gauge field WA
q−i; the gauge

parameters ξA
q−i−1, . . . , ξA

0 will remain to be the gauge parameters for ξA
q−i; the components

of the ‘field strength’ ξA
q−i+1 that are to be set to zero plays the role of gauge fixing conditions.

Consequently, for ξSi we obtain the correct mass-like terms determined by the lowest energy
(2.7) via (1.8), in particular (2.3) for ξS1 .

The results. Thus, we have shown that the generalized connections of the (anti)-de Sitter
algebra WA

q , ξA
q−1, . . . , ξA

0 contain as the Lorentz components the dynamical field φS0 , the
first-level gauge parameter ξS1 , . . . and the qth-level gauge parameter ξSq and setting certain
components of the field strength RA

q+1 to zero we derive for φS the wave equation with the
correct mass-like term (2.1). Consequently, the exact sequence (2.5) is embedded into (5.3).

Since certain gauge connection W
AS,q,t

q is associated with each triple (S, q, t), the map
� from the variety of (A)dSd gauge fields to the variety of (A)dSd connections is an into
mapping. Despite the fact that � is not an onto mapping the rest of the gauge connections do
not describe anything new, providing us with dual formulations.

First of all, there are three Hodge-like dualities: (1) with the help of the world Levi-Civita
symbol εμ1...μd

a degree-q form can be transformed to a degree-(d − q) one; (2) the invariant
tensor εA1...Ad+1 of the anti-de Sitter algebra g allows us to consider the tensors of g having the
symmetry of a Young diagram with at most [(d + 1)/2] rows, as we have done throughout
this paper; (3) on-mass-shell, one can use the invariant tensor εI1...Id−1 of the ‘(anti)-de Sitter
Wigner little algebra’ so(d − 1) to map physical polarization tensors having the symmetry of
a height-k Young diagram into the tensors having the symmetry of a height-(d − 1 − k) Young
diagram.

18 The presence of the gauge parameter having the symmetry of S1 that contributes to the gauge transformations for
φS is also important because there might be a formulation without any gauge symmetry, which describes a ‘massive’
field.
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By the construction, the degree q is constrained19 by 1 � q � qmax = [(d − 1)/2]. The
forms of degree zero are not gauge inasmuch as there is no degree-(−1) forms to become
gauge parameters. Zero forms play an important role within the unfolded approach, forming
the Weyl module that carries physical degrees of freedom. Making use of duality-(1) allows one
to map forms of degree higher than qmax into the forms of degree not greater than qmax except
for the gap for d = 2n in degree-n forms. Indeed, in this case qmax = n − 1 = [(2n − 1)/2]
and, hence, degree-n forms can be obtained from our construction neither directly nor by
means of the duality-(1)20. However, no new (A)dSd gauge fields arise in this way inasmuch
as a height-n diagram of so(d − 1) is equivalent to the height-(n − 1) diagram by means
of the duality-(3). Consequently, there are two equivalent formulations for any gauge field
(S, q, t) in (A)dSd except for d even and q = qmax, in which case there are three equivalent
formulations.

6. Discussion and conclusions

Each (A)dSd gauge field is uniquely defined by a triple (S, q, t) [68] consisting of an so(d −1)

Young diagram that characterizes spin degrees of freedom and integer parameters q, t that
determine the gauge symmetry—the gauge parameter has the symmetry of a diagram obtained
by removing t cells from the qth row of S; the order of derivatives in the gauge transformation
law is equal to t.

We have shown that the gauge connection W
AS,q,t

q with values in the irreducible module
of the (anti)-de Sitter algebra AS,q,t defined by (5.1), is a natural geometric framework for the
gauge field (S, q, t). The whole set of auxiliary fields is incorporated into the single q-form.
The gauge transformations have a very simple form and the field strength is manifestly gauge
invariant.

The frame-like Lorentz formulation is obtained by performing the dimensional reduction
of the tensor A of the (anti)-de Sitter algebra down to irreducible tensors of the Lorentz algebra.
The metric-like formulation is obtained by further decomposing the connection of the Lorentz
algebra into fully metric-like tensors.

As soon as we have identified the free field theory described by the connection WA
q there

is no need in decomposing the (A)dSd module A into the Lorentz ones, taking the advantage
of working in terms of a single field that has a clear algebraic and geometric meaning.

Notwithstanding the fact that only bosonic fields were considered in this paper, the
extension to the fermionic fields is straightforward, more complicated though due to Majorana,
Weyl and Majorana–Weyl conditions to be analysed carefully. We conjecture the final
conclusion to be the same in that a fermionic gauge field defined by (S, q, t), where S
refers to the tensor part of an irreducible so(d − 1)-spin-tensor, can be described by a gauge
connection W

α̂:AS,q,t

q , where the tensor part is obtained by the same rules as in the bosonic case
and α̂ is a spinor index of the (A)dSd -algebra.

A number of dual formulations is also included in W
AS,q,t

q —any of the auxiliary fields at
a grade higher than that of the frame field can be regarded as a dynamical one inasmuch as by
setting certain components of the field strength to zero, lower grade fields can be expressed in
terms of derivatives of the fields at a higher grade. This issue is far beyond the scope of the
paper. As an example, for a massless spin-s field, i.e. S = Y{s}, q = 1, t = 1, instead of the

19 q gets its maximal value iff q = p and p is equal to the maximal height allowed for Young diagrams of so(d − 1),
i.e. is equal to [(d − 1)/2].
20 Having a degree-n form for d = 2n suggests imposing (anti)-self duality conditions with respect to world form
indices [99], which seems problematic since the Hodge operator is built of the metric field that is to become a
dynamical field in the full interacting theory.
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frame field e
a(s−1)
1 the auxiliary field at grade-1 ω

a(s−1),b
1 was taken to be the dynamical field

in [100].
There is no room for massive fields in this picture since massive fields are nongauge

by nature. The potentials for massive fields are zero-forms belonging to certain infinite-
dimensional modules of the (A)dSd algebra, see [63, 64, 96]. Nevertheless, massive fields
can also be formulated in a gauge fashion [27, 29, 30, 40, 42, 62]; for the discussion within
the unfolded approach see [63, 64].

We would like to stress that the proposed frame-like description of arbitrary-spin
(partially)-massless fields tells us not so much about the Lagrangian description for the general
case, since most of the transversality constraints (1.2) cannot be obtained by gauge fixing and,
hence, supplementary fields may be needed.

That each WA
q may describe a certain gauge field does not imply that WA

q cannot be used

another way. For instance, W
A,B
1 can be used to describe either a dynamical spin-2 field or

the background (anti)-de Sitter space (�A,B). The theory is defined by the equations imposed
in terms of RA

q+1. There exists a powerful method, known as σ−-cohomology [63, 64, 85, 96,
97], to classify all gauge invariant differential equations that can be imposed on WA

q . The
matter being very technical, σ−-cohomology are found in a companion paper [97].

To be clarified is the Minkowski limit of the proposed (A)dSd systems. The Poincare
algebra has no tensor representations; hence, to take the Minkowski limit WA

q has to be
reduced to the connections of the Lorentz algebra. The Minkowski limit of a massless
or partially-massless field is given generally by a direct sum of Minkowski massless fields
[54, 63, 64]. Both the frame-like and the unfolded descriptions of arbitrary-spin massless
field in the Minkowski space are available [38, 36]. After appropriate rescaling of Lorentz
connections ωLα arising from WA

q , with the help of the background vielbein ha
μ one can

construct a map that takes each ωLα to a field from the unfolded system of a certain Minkowski
massless field that is present in the Minkowski limit according to [54, 63, 64].

Gauge fields in (A)dSd are in fact more massive as compared to their Minkowski massless
partners inasmuch as only one gauge symmetry survives in (A)dSd and it kills a small part
of degrees of freedom. Therefore, one may argue that gauge fields in (A)dSd should be
reformulated in much the same way as massive fields [27, 29, 30, 40, 42, 62, 101], with
the rest of gauge symmetries that get broken in (A)dSd to be restored upon introducing
Stueckelberg fields. Nonminimal Stueckelberg formulation of this sort was constructed in
[63, 64]. It would also be interesting to track the appearance of all gauge potentials WA

q for a
fixed S from the results of [63, 64].

In the framework of the unfolded approach the connection WA
q constitutes the gauge

sector of the unfolded system of equations. Following the success of the unfolded approach
for massless spin-s fields, in which case the full nonlinear theory of one-form connections WA

1
with s 1

s−1 was constructed in [1, 2], we expect the proposed formulation for gauge fields
in (A)dSd to play an important role in the nonlinear theories of mixed-symmetry fields, which
are believed to exist [102–105].

Acknowledgments

The author is grateful to M A Vasiliev, K B Alkalaev, O V Shaynkman, R R Metsaev,
N Boulanger and P Sundell for many illuminating discussions on mixed-symmetry fields.
The author wishes to thank M A Vasiliev for reading the manuscript and giving many
valuable comments. The work was supported in part by grants RFBR No 08-02-00963,

26



J. Phys. A: Math. Theor. 42 (2009) 385401 E D Skvortsov

LSS-1615.2008.2, INTAS No 05-7928, by the Landau scholarship and by the scholarship of
the Dynasty foundation.

References

[1] Vasiliev M A 1990 Consistent equation for interacting gauge fields of all spins in (3+1)-dimensions Phys.
Lett. B 243 378–82

[2] Vasiliev M A 2003 Nonlinear equations for symmetric massless higher spin fields in (A)dS(d) Phys. Lett.
B 567 139–51 (arXiv:hep-th/0304049)

[3] Vasiliev M A 1988 Equations of motion of interacting massless fields of all spins as a free differential algebra
Phys. Lett. B 209 491–7

[4] Vasiliev M A 1989 Consistent equations for interacting massless fields of all spins in the first order in curvatures
Ann. Phys. 190 59–106

[5] Vasiliev M A 1994 Unfolded representation for relativistic equations in (2+1) anti-de Sitter space Class.
Quantum Grav. 11 649–64

[6] Sullivan D 1977 Infinitesimal computations in topology Publ. Math. IHES 47 269–331
[7] van Nieuwenhuizen P 1982 Free graded differential superalgebras Invited talk given at 11th Int. Colloq. on

Group Theoretical Methods in Physics (Istanbul, Turkey, 23–28 Aug 1982)
[8] D’Auria R, Fre P, Townsend P K and van Nieuwenhuizen P 1984 Invariance of actions, rheonomy and the

new minimal n = 1 supergravity in the group manifold approach Ann. Phys. 155 423
[9] D’Auria R and Fre P 1982 Geometric supergravity in d = 11 and its hidden supergroup Nucl. Phys.

B 201 101–40
[10] Konstein S E and Vasiliev M A 1990 Extended higher spin superalgebras and their massless representations

Nucl. Phys. B 331 475–99
[11] Konshtein S E and Vasiliev M A 1989 Massless representations and admissibility condition for higher spin

superalgebras Nucl. Phys. B 312 402
[12] Vasiliev M A 2004 Higher spin superalgebras in any dimension and their representations J. High Energy

Phys. JHEP12(2004)046 (arXiv:hep-th/0404124)
[13] Buchbinder I L, Pashnev A and Tsulaia M 2001 Lagrangian formulation of the massless higher integer spin

fields in the AdS background Phys. Lett. B 523 338–46 (arXiv:hep-th/0109067)
[14] Francia D and Sagnotti A 2002 Free geometric equations for higher spins Phys. Lett. B 543 303–10

(arXiv:hep-th/0207002)
[15] Sezgin E and Sundell P 2002 Massless higher spins and holography Nucl. Phys. B 644 303–70

(arXiv:hep-th/0205131)
[16] Bekaert X, Buchbinder I L, Pashnev A and Tsulaia M 2004 On higher spin theory: strings, BRST, dimensional

reductions Class. Quantum Grav. 21 S1457–1464 (arXiv:hep-th/0312252)
[17] Sagnotti A and Tsulaia M 2004 On higher spins and the tensionless limit of string theory Nucl. Phys.

B 682 83–116 (arXiv:hep-th/0311257)
[18] Sorokin D 2005 Introduction to the classical theory of higher spins AIP Conf. Proc. 767 172–202

(arXiv:hep-th/0405069)
[19] Bouatta N, Compere G and Sagnotti A 2004 An introduction to free higher-spin fields arXiv:hep-th/0409068
[20] Bekaert X, Cnockaert S, Iazeolla C and Vasiliev M A 2005 Nonlinear higher spin theories in various dimensions

arXiv:hep-th/0503128
[21] Francia D and Hull C M 2005 Higher-spin gauge fields and duality arXiv:hep-th/0501236
[22] Sagnotti A, Sezgin E and Sundell P 2005 On higher spins with a strong Sp(2,R) condition arXiv:hep-th/0501156
[23] Buchbinder I L, Krykhtin V A and Lavrov P M 2007 Gauge invariant Lagrangian formulation of higher spin

massive bosonic field theory in AdS space Nucl. Phys. B 762 344–76 (arXiv:hep-th/0608005)
[24] Buchbinder I L, Galajinsky A V and Krykhtin V A 2007 Quartet unconstrained formulation for massless

higher spin fields Nucl. Phys. B 779 155–77 (arXiv:hep-th/0702161)
[25] Curtright T 1985 Generalized gauge fields Phys. Lett. B 165 304
[26] Labastida J M F 1989 Massless particles in arbitrary representations of the Lorentz group Nucl. Phys.

B 322 185
[27] Zinoviev Y M 2002 On massive mixed symmetry tensor fields in Minkowski space and (A)dS

arXiv:hep-th/0211233
[28] Bekaert X and Boulanger N 2004 Tensor gauge fields in arbitrary representations of GL(D,R): duality and

Poincare lemma Commun. Math. Phys. 245 27–67 (arXiv:hep-th/0208058)

27

http://dx.doi.org/10.1016/0370-2693(90)91400-6
http://dx.doi.org/10.1016/S0370-2693(03)00872-4
http://www.arxiv.org/abs/hep-th/0304049
http://dx.doi.org/10.1016/0370-2693(88)91179-3
http://dx.doi.org/10.1016/0003-4916(89)90261-3
http://dx.doi.org/10.1088/0264-9381/11/3/015
http://dx.doi.org/10.1016/0003-4916(84)90007-1
http://dx.doi.org/10.1016/0550-3213(82)90376-5
http://dx.doi.org/10.1016/0550-3213(90)90216-Z
http://dx.doi.org/10.1016/0550-3213(89)90301-5
http://dx.doi.org/10.1088/1126-6708/2004/12/046
http://www.arxiv.org/abs/hep-th/0404124
http://dx.doi.org/10.1016/S0370-2693(01)01268-0
http://www.arxiv.org/abs/hep-th/0109067
http://dx.doi.org/10.1016/S0370-2693(02)02449-8
http://www.arxiv.org/abs/hep-th/0207002
http://dx.doi.org/10.1016/S0550-3213(02)00739-3
http://www.arxiv.org/abs/hep-th/0205131
http://dx.doi.org/10.1088/0264-9381/21/10/018
http://www.arxiv.org/abs/hep-th/0312252
http://dx.doi.org/10.1016/j.nuclphysb.2004.01.024
http://www.arxiv.org/abs/hep-th/0311257
http://dx.doi.org/10.1063/1.1923335
http://www.arxiv.org/abs/hep-th/0405069
http://www.arxiv.org/abs/hep-th/0409068
http://www.arxiv.org/abs/hep-th/0503128
http://www.arxiv.org/abs/hep-th/0501236
http://www.arxiv.org/abs/hep-th/0501156
http://dx.doi.org/10.1016/j.nuclphysb.2006.11.021
http://www.arxiv.org/abs/hep-th/0608005
http://dx.doi.org/10.1016/j.nuclphysb.2007.03.032
http://www.arxiv.org/abs/hep-th/0702161
http://dx.doi.org/10.1016/0370-2693(85)91235-3
http://dx.doi.org/10.1016/0550-3213(89)90490-2
http://www.arxiv.org/abs/hep-th/0211233
http://dx.doi.org/10.1007/s00220-003-0995-1
http://www.arxiv.org/abs/hep-th/0208058


J. Phys. A: Math. Theor. 42 (2009) 385401 E D Skvortsov

[29] Zinoviev Y M 2003 First order formalism for massive mixed symmetry tensor fields in Minkowski and (A)dS
spaces arXiv:hep-th/0306292

[30] Zinoviev Y M 2003 First order formalism for mixed symmetry tensor fields arXiv:hep-th/0304067
[31] Alkalaev K B 2004 Two-column higher spin massless fields in AdS(d) Theor. Math. Phys. 140 1253–63

(arXiv:hep-th/0311212)
[32] Alkalaev K B 2006 Mixed-symmetry massless gauge fields in AdS(5) Theor. Math. Phys. 149 1338–48
[33] Bekaert X and Boulanger N 2007 Tensor gauge fields in arbitrary representations of GL(D,R): II. Quadratic

actions Commun. Math. Phys. 271 723–73 (arXiv:hep-th/0606198)
[34] Moshin P Y and Reshetnyak A A 2007 BRST approach to Lagrangian formulation for mixed-symmetry

fermionic higher-spin fields J. High Energy Phys. JHEP10(2007)040 (arXiv:0707.0386)
[35] Buchbinder I L, Krykhtin V A and Takata H 2007 Gauge invariant Lagrangian construction for massive

bosonic mixed symmetry higher spin fields Phys. Lett. B 656 253–64 (arXiv:0707.2181 [hep-th])
[36] Skvortsov E D 2009 Frame-like actions for massless mixed-symmetry fields in Minkowski space Nucl. Phys.

B 808 569–91 (arXiv:0807.0903)
[37] Reshetnyak A A 2008 On Lagrangian formulations for mixed-symmetry HS fields on AdS spaces within

BFV-BRST approach arXiv:0809.4815
[38] Skvortsov E D 2008 Mixed-symmetry massless fields in Minkowski space unfolded J. High Energy

Phys. JHEP07(2008)004 (arXiv:0801.2268)
[39] Campoleoni A, Francia D, Mourad J and Sagnotti A 2008 Unconstrained higher spins of mixed symmetry: I.

Bose fields arXiv:0810.4350
[40] Zinoviev Y M 2009 Toward frame-like gauge invariant formulation for massive mixed symmetry bosonic

fields Nucl. Phys. B 812 46–63 (arXiv:0809.3287)
[41] Alkalaev K B, Grigoriev M and Tipunin I Y 2008 Massless Poincare modules and gauge invariant equations

arXiv:0811.3999
[42] Zinoviev Y M 2009 Frame-like gauge invariant formulation for mixed symmetry fermionic fields

arXiv:0904.0549
[43] Gross D J 1988 High-energy symmetries of string theory Phys. Rev. Lett. 60 1229
[44] Sundborg B 2001 Stringy gravity, interacting tensionless strings and massless higher spins Nucl. Phys. Proc.

Suppl. 102 113–9 (arXiv:hep-th/0103247)
[45] Sezgin E and Sundell P 2001 Doubletons and 5D higher spin gauge theory J. High Energy

Phys. JHEP09(2001)036 (arXiv:hep-th/0105001)
[46] Klebanov I R and Polyakov A M 2002 AdS dual of the critical O(N)vector model Phys. Lett. B 550 213–9

(arXiv:hep-th/0210114)
[47] Francia D and Sagnotti A 2003 On the geometry of higher-spin gauge fields Class. Quantum Grav. 20 S473–86

(arXiv:hep-th/0212185)
[48] Bonelli G 2003 On the tensionless limit of bosonic strings, infinite symmetries and higher spins Nucl. Phys.

B 669 159–72 (arXiv:hep-th/0305155)
[49] Francia D and Sagnotti A 2005 Minimal local Lagrangians for higher-spin geometry Phys. Lett. B 624 93–104

(arXiv:hep-th/0507144)
[50] Francia D and Sagnotti A 2006 Higher-spin geometry and string theory J. Phys. Conf. Ser. 33 57

(arXiv:hep-th/0601199)
[51] Nicolai H 1984 Representations of supersymmetry in anti-de Sitter space Proc. of Spring School on

Supergravity and Supersymmetry (Trieste, Italy, 4–14 April 1984)
[52] Metsaev R R 1995 Massless mixed symmetry bosonic free fields in d-dimensional anti-de Sitter spacetime

Phys. Lett. B 354 78–84
[53] Metsaev R R 1998 Arbitrary spin massless bosonic fields in d-dimensional anti-de Sitter space

arXiv:hep-th/9810231
[54] Brink L, Metsaev R R and Vasiliev M A 2000 How massless are massless fields in AdS(d) Nucl. Phys.

B 586 183–205 (arXiv:hep-th/0005136)
[55] Deser S and Nepomechie R I 1984 Gauge invariance versus masslessness in de Sitter space Ann. Phys. 154 396
[56] Deser S and Nepomechie R I 1983 Anomalous propagation of gauge fields in conformally flat spaces Phys.

Lett. B 132 321
[57] Higuchi A 1987 Symmetric tensor spherical harmonics on the N sphere and their application to the de Sitter

group SO(N,1) J. Math. Phys. 28 1553
[58] Deser S and Waldron A 2001 Gauge invariances and phases of massive higher spins in (A)dS Phys. Rev.

Lett. 87 031601 (arXiv:hep-th/0102166)
[59] Deser S and Waldron A 2001 Null propagation of partially massless higher spins in (A)dS and cosmological

constant speculations Phys. Lett. B513 137–41 (arXiv:hep-th/0105181)

28

http://www.arxiv.org/abs/hep-th/0306292
http://www.arxiv.org/abs/hep-th/0304067
http://dx.doi.org/10.1023/B:TAMP.0000039831.42464.83
http://www.arxiv.org/abs/hep-th/0311212
http://dx.doi.org/10.1007/s11232-006-0122-5
http://dx.doi.org/10.1007/s00220-006-0187-x
http://www.arxiv.org/abs/hep-th/0606198
http://dx.doi.org/10.1088/1126-6708/2007/10/040
http://www.arxiv.org/abs/0707.0386
http://www.arxiv.org/abs/0707.2181
http://dx.doi.org/10.1016/j.nuclphysb.2008.09.007
http://www.arxiv.org/abs/0807.0903
http://www.arxiv.org/abs/0809.4815
http://dx.doi.org/10.1088/1126-6708/2008/07/004
http://www.arxiv.org/abs/0801.2268
http://www.arxiv.org/abs/0810.4350
http://dx.doi.org/10.1016/j.nuclphysb.2008.12.003
http://www.arxiv.org/abs/0809.3287
http://www.arxiv.org/abs/0811.3999
http://www.arxiv.org/abs/0904.0549
http://dx.doi.org/10.1103/PhysRevLett.60.1229
http://dx.doi.org/10.1016/S0920-5632(01)01545-6
http://www.arxiv.org/abs/hep-th/0103247
http://dx.doi.org/10.1088/1126-6708/2001/09/036
http://www.arxiv.org/abs/hep-th/0105001
http://dx.doi.org/10.1016/S0370-2693(02)02980-5
http://www.arxiv.org/abs/hep-th/0210114
http://dx.doi.org/10.1088/0264-9381/20/12/313
http://www.arxiv.org/abs/hep-th/0212185
http://dx.doi.org/10.1016/j.nuclphysb.2003.07.002
http://www.arxiv.org/abs/hep-th/0305155
http://dx.doi.org/10.1016/j.physletb.2005.08.002
http://www.arxiv.org/abs/hep-th/0507144
http://dx.doi.org/10.1088/1742-6596/33/1/006
http://www.arxiv.org/abs/hep-th/0601199
http://dx.doi.org/10.1016/0370-2693(95)00563-Z
http://www.arxiv.org/abs/hep-th/9810231
http://dx.doi.org/10.1016/S0550-3213(00)00402-8
http://www.arxiv.org/abs/hep-th/0005136
http://dx.doi.org/10.1016/0003-4916(84)90156-8
http://dx.doi.org/10.1016/0370-2693(83)90317-9
http://dx.doi.org/10.1063/1.527513
http://dx.doi.org/10.1103/PhysRevLett.87.031601
http://www.arxiv.org/abs/hep-th/0102166
http://www.arxiv.org/abs/hep-th/0105181


J. Phys. A: Math. Theor. 42 (2009) 385401 E D Skvortsov

[60] Deser S and Waldron A 2001 Partial masslessness of higher spins in (A)dS Nucl. Phys. B 607 577–604
(arXiv:hep-th/0103198)

[61] Deser S and Waldron A 2003 Arbitrary spin representations in de Sitter from dS/CFT with applications to dS
supergravity Nucl. Phys. B 662 379–92 (arXiv:hep-th/0301068)

[62] Zinoviev Y M 2001 On massive high spin particles in (A)dS arXiv:hep-th/0108192
[63] Boulanger N, Iazeolla C and Sundell P 2008 Unfolding mixed-symmetry fields in AdS and the BMV conjecture:

I. General formalism arXiv:0812.3615
[64] Boulanger N, Iazeolla C and Sundell P 2008 Unfolding mixed-symmetry fields in AdS and the BMV conjecture:

II. Oscillator realization arXiv:0812.4438
[65] Vasiliev M A 2001 Cubic interactions of bosonic higher spin gauge fields in AdS(5) Nucl. Phys. B 616 106–62

(arXiv:hep-th/0106200)
[66] Alkalaev K B, Shaynkman O V and Vasiliev M A 2004 On the frame-like formulation of mixed-symmetry

massless fields in (A)dS(d) Nucl. Phys. B 692 363–93 (arXiv:hep-th/0311164)
[67] Skvortsov E D and Vasiliev M A 2006 Geometric formulation for partially massless fields Nucl. Phys.

B 756 117–47 (arXiv:hep-th/0601095)
[68] Alkalaev K B and Skvortsov E D 2009 unpublished
[69] MacDowell S W and Mansouri F 1977 Unified geometric theory of gravity and supergravity Phys. Rev.

Lett. 38 739
[70] Stelle K S and West P C 1980 Spontaneously broken de Sitter symmetry and the gravitational holonomy group

Phys. Rev. D 21 1466
[71] Wigner E P 1939 On unitary representations of the inhomogeneous Lorentz group Ann. Math. 40 149–204
[72] Bekaert X and Boulanger N 2006 The unitary representations of the poincare group in any spacetime dimension

arXiv:hep-th/0611263
[73] Gelfand I and Yaglom A 1948 General relativistically invariant equations and infinite-dimensional

representations of the Lorentz group Zh. Ehksp. Theor. Fiz. 18 703–33
[74] Bargmann V and Wigner E P 1948 Group theoretical discussion of relativistic wave equations Proc. Natl

Acad. Sci. 34 211
[75] Singh L P S and Hagen C R 1974 Lagrangian formulation for arbitrary spin: 1. The boson case Phys. Rev.

D 9 898–909
[76] Zinoviev Y M 2007 On massive spin 2 interactions Nucl. Phys. B 770 83–106 (arXiv:hep-th/0609170)
[77] Metsaev R R 2008 Gravitational and higher-derivative interactions of massive spin 5/2 field in (A)dS space

Phys. Rev. D 77 025032 (arXiv:hep-th/0612279)
[78] Zinoviev Y M 2009 On spin 3 interacting with gravity Class. Quantum Grav. 26 035022 (arXiv:0805.2226)
[79] Girardello L, Porrati M and Zaffaroni A 2003 3-D interacting CFTs and generalized Higgs phenomenon in

higher spin theories on AdS Phys. Lett. B 561 289–93 (arXiv:hep-th/0212181)
[80] Bianchi M, Heslop P J and Riccioni F 2005 More on la grande bouffe J. High Energy Phys. JHEP08(2005)088

(arXiv:hep-th/0504156)
[81] Vasiliev M A 1990 Dynamics of massless higher spins in the second order in curvatures Phys. Lett.

B 238 305–14
[82] Fradkin E S and Vasiliev M A 1987 Cubic interaction in extended theories of massless higher spin fields Nucl.

Phys. B 291 141
[83] Fronsdal C 1978 Massless fields with integer spin Phys. Rev. D 18 3624
[84] Vasiliev M A 1980 ‘Gauge’ form of description of massless fields with arbitrary spin Sov. J. Nucl. Phys. 32

439
[85] Lopatin V E and Vasiliev M A 1988 Free massless bosonic fields of arbitrary spin in d-dimensional de Sitter

space Mod. Phys. Lett. A 3 257
[86] Breitenlohner P and Freedman D Z 1982 Positive energy in anti-de Sitter backgrounds and gauged extended

supergravity Phys. Lett. B 115 197
[87] de Wit B and Herger I 2000 Anti-de Sitter supersymmetry Lect. Notes Phys. 541 79–100

(arXiv:hep-th/9908005)
[88] Metsaev R R 2008 Shadows, currents and AdS arXiv:0805.3472
[89] Alvarez E, Blas D, Garriga J and Verdaguer E 2006 Transverse Fierz–Pauli symmetry Nucl. Phys. B 756 148–70

(arXiv:hep-th/0606019)
[90] Skvortsov E D and Vasiliev M A 2007 Transverse invariant higher spin fields arXiv:hep-th/0701278
[91] Fierz M and Pauli W 1939 On relativistic wave equations for particles of arbitrary spin in an electromagnetic

field Proc. R. Soc. A 173 211–32
[92] Weyl H 1929 Electron and gravitation Z. Phys. 56 330–52
[93] Kibble T W B 1961 Lorentz invariance and the gravitational field J. Math. Phys. 2 212–21

29

http://dx.doi.org/10.1016/S0550-3213(01)00212-7
http://www.arxiv.org/abs/hep-th/0103198
http://dx.doi.org/10.1016/S0550-3213(03)00348-1
http://www.arxiv.org/abs/hep-th/0301068
http://www.arxiv.org/abs/hep-th/0108192
http://www.arxiv.org/abs/0812.3615
http://www.arxiv.org/abs/0812.4438
http://dx.doi.org/10.1016/S0550-3213(01)00433-3
http://www.arxiv.org/abs/hep-th/0106200
http://dx.doi.org/10.1016/j.nuclphysb.2004.05.031
http://www.arxiv.org/abs/hep-th/0311164
http://dx.doi.org/10.1016/j.nuclphysb.2006.06.019
http://www.arxiv.org/abs/hep-th/0601095
http://dx.doi.org/10.1103/PhysRevLett.38.739
http://dx.doi.org/10.1103/PhysRevD.21.1466
http://dx.doi.org/10.2307/1968551
http://www.arxiv.org/abs/hep-th/0611263
http://dx.doi.org/10.1073/pnas.34.5.211
http://dx.doi.org/10.1103/PhysRevD.9.898
http://dx.doi.org/10.1016/j.nuclphysb.2007.02.005
http://www.arxiv.org/abs/hep-th/0609170
http://dx.doi.org/10.1103/PhysRevD.77.025032
http://www.arxiv.org/abs/hep-th/0612279
http://dx.doi.org/10.1088/0264-9381/26/3/035022
http://www.arxiv.org/abs/0805.2226
http://dx.doi.org/10.1016/S0370-2693(03)00492-1
http://www.arxiv.org/abs/hep-th/0212181
http://dx.doi.org/10.1088/1126-6708/2005/08/088
http://www.arxiv.org/abs/hep-th/0504156
http://dx.doi.org/10.1016/0370-2693(90)91740-3
http://dx.doi.org/10.1016/0550-3213(87)90469-X
http://dx.doi.org/10.1103/PhysRevD.18.3624
http://dx.doi.org/10.1142/S0217732388000313
http://dx.doi.org/10.1016/0370-2693(82)90643-8
http://dx.doi.org/10.1007/3-540-46634-7_4
http://www.arxiv.org/abs/hep-th/9908005
http://www.arxiv.org/abs/0805.3472
http://dx.doi.org/10.1016/j.nuclphysb.2006.08.003
http://www.arxiv.org/abs/hep-th/0606019
http://www.arxiv.org/abs/hep-th/0701278
http://dx.doi.org/10.1098/rspa.1939.0140
http://dx.doi.org/10.1007/BF01339504
http://dx.doi.org/10.1063/1.1703702


J. Phys. A: Math. Theor. 42 (2009) 385401 E D Skvortsov

[94] Alkalaev K B, Shaynkman O V and Vasiliev M A 2005 Lagrangian formulation for free mixed-symmetry
bosonic gauge fields in (A)dS(d) J. High Energy Phys. (arXiv:hep-th/0501108)

[95] Alkalaev K B, Shaynkman O V and Vasiliev M A 2006 Frame-like formulation for free mixed-symmetry
bosonic massless higher-spin fields in AdS(d) arXiv:hep-th/0601225

[96] Shaynkman O V and Vasiliev M A 2000 Scalar field in any dimension from the higher spin gauge theory
perspective Theor. Math. Phys. 123 683–700 (arXiv:hep-th/0003123)

[97] Skvortsov E Gauge fields in (anti)-de Sitter space and σ−-cohomology
[98] Shaynkman O V and Vasiliev M A 2001 Higher spin conformal symmetry for matter fields in 2+1 dimensions

Theor. Math. Phys. 128 1155–68 (arXiv:hep-th/0103208)
[99] Metsaev R R 2008 Conformal self-dual fields arXiv:0812.2861

[100] Matveev A S and Vasiliev M A 2005 On dual formulation for higher spin gauge fields in (A)dS(d) Phys. Lett.
B 609 157–66 (arXiv:hep-th/0410249)

[101] Zinoviev Y M 2009 Frame-like gauge invariant formulation for massive high spin particles Nucl. Phys.
B 808 185–204 (arXiv:0808.1778)

[102] Metsaev R R 1993 Cubic interaction vertices of totally symmetric and mixed symmetry massless
representations of the Poincare group in d = 6 spacetime Phys. Lett. B 309 39–44

[103] Metsaev R R 1993 Generating function for cubic interaction vertices of higher spin fields in any dimension
Mod. Phys. Lett. A 8 2413–26

[104] Metsaev R R 2006 Cubic interaction vertices for massive and massless higher spin fields Nucl. Phys.
B 759 147–201 (arXiv:hep-th/0512342)

[105] Boulanger N and Cnockaert S 2004 Consistent deformations of (p,p)-type gauge field theories J. High Energy
Phys. JHEP03(2004)031 (arXiv:hep-th/0402180)

30

http://dx.doi.org/10.1088/1126-6708/2005/08/069
http://www.arxiv.org/abs/hep-th/0501108
http://www.arxiv.org/abs/hep-th/0601225
http://dx.doi.org/10.1007/BF02551402
http://www.arxiv.org/abs/hep-th/0003123
http://dx.doi.org/10.1023/A:1012399417069
http://www.arxiv.org/abs/hep-th/0103208
http://www.arxiv.org/abs/0812.2861
http://dx.doi.org/10.1016/j.physletb.2005.01.032
http://www.arxiv.org/abs/hep-th/0410249
http://dx.doi.org/10.1016/j.nuclphysb.2008.09.020
http://www.arxiv.org/abs/0808.1778
http://dx.doi.org/10.1016/0370-2693(93)91500-M
http://dx.doi.org/10.1142/S0217732393003706
http://dx.doi.org/10.1016/j.nuclphysb.2006.10.002
http://www.arxiv.org/abs/hep-th/0512342
http://dx.doi.org/10.1088/1126-6708/2004/03/031
http://www.arxiv.org/abs/hep-th/0402180

	Introduction and main results
	Field theories in Minkowski and (A)dSd, mixed-symmetry fields
	1. Wave equations and representation theory in Minkowski and (A)dSd W
	2. Gauge fields in (A)dSd
	3. Background geometry
	4. Gauge connections of (anti)-de Sitter algebra
	5. Gauge fields versus gauge connections
	6. Discussion and conclusions
	Acknowledgments
	References

